

Badboy v2.1
User Documentation

http://www.badboy.com.au/

Badboy v2.1 User Documentation

 Page 2 of 128

Table of Contents

1 INTRODUCTION ... 10

2 BASIC OPERATION ... 10

2.1 RECORDING ... 10

2.2 CREATING SUITES, TESTS AND STEPS ... 10

2.3 THE SCRIPT TREE ... 11

2.4 PLAYING .. 12

3 AUTOMATING SCRIPTS .. 12

3.1 EDITING PARAMETERS AND HOSTS ... 12

3.2 SEARCHING AND REPLACING .. 13

3.3 PROPERTY MASK... 13

3.4 VARIABLES ... 14

3.5 LINKING VALUES ... 14

3.6 USING THE DATE/DIME TO CREATE UNIQUE PARAMETER VALUES .. 15

4 RECORDING MODES .. 15

4.1 REQUEST MODE ... 15

4.2 NAVIGATION MODE .. 16

5 NAVIGATIONS ... 17

5.1 RECORDING NAVIGATIONS .. 17

5.2 TYPES OF NAVIGATION ITEMS .. 17

5.3 NAVIGATION REFERENCES ... 18

5.4 NAVIGATION PROPERTIES ... 18

5.5 AUTO-RECORD OF FORM POPULATORS ... 20

5.6 PASSIVE NAVIGATIONS ... 20

6 TESTS AND TEMPLATES ... 20

6.1 SUITES AND TEST ITEMS.. 20

6.2 ADVANTAGES TO USING TESTS ... 21

6.3 ADDING SUITES AND TESTS TO YOUR SCRIPT ... 21

6.4 USING TESTS WITH TEMPLATES .. 21

7 VARIABLES ... 21

7.1 ADDING VARIABLES ... 21

7.2 VIEWING VARIABLES .. 22

7.3 EDITING VARIABLES ... 22

7.4 USING VARIABLES ... 22

7.5 VARIABLE VALUE LISTS ... 22

7.6 INCREMENTING VARIABLES.. 23

Badboy v2.1 User Documentation

 Page 3 of 128

7.7 SETTING VARIABLES AS PART OF YOUR SCRIPT ... 23

7.8 REGULAR EXPRESSION NOTES .. 24

7.9 AUTOMATIC VARIABLES .. 24

8 INCREMENTING VARIABLES ... 24

8.1 INCREMENT STRATEGIES ... 25

9 USING DATA SOURCES ... 26

9.1 DATA SOURCE REQUIREMENTS .. 26

9.2 ADDING A DATA SOURCE .. 27

9.3 SETTING THE PROPERTIES ... 27

9.4 CONTROLLING THE FORMAT OF LOADED DATA .. 28

9.5 PLAYING DATA SOURCE ITEMS ... 29

9.6 USING DATA SOURCE VALUES ... 29

9.7 LOOPING OVER VALUES IN A DATA SOURCE ... 29

9.8 ADVANCED OPTIONS ... 30

10 POPULATING AND SUBMITTING FORMS ... 30

10.1 CREATING A FORM POPULATOR MANUALLY ... 31

10.2 ADDING FIELDS TO A FORM POPULATOR .. 31

10.3 USING REGULAR EXPRESSIONS ... 32

10.4 AUTOMATIC CAPTURE OF FORM POPULATORS .. 32

10.5 PLAYING FORM POPULATORS .. 32

10.6 FORM VALUES .. 32

10.7 INDEXED FORM VALUES.. 32

10.8 SELECT / DROPDOWN BOXES... 32

10.9 SENDING JAVASCRIPT EVENTS ... 33

10.10 USING FORM POPULATORS TO SUBMIT FORMS .. 33

11 USING TEMPLATES .. 33

11.1 THE NEED FOR TEST TEMPLATES .. 33

11.2 CREATING TEST TEMPLATES .. 34

11.3 OVERRIDING STEPS .. 35

12 UNDERSTANDING PLAYBACK RESULTS .. 35

12.1 SUMMARY VIEW ... 35

12.2 THE SUMMARY HIERARCHY ... 36

12.3 ADDING INFORMATION TO SUMMARY VIEW ... 36

12.4 GENERATING REPORTS ... 36

13 TIMEOUTS AND ERROR HANDLERS .. 36

13.1 CONFIGURING A TIMEOUT .. 37

13.2 ERROR HANDLERS ... 37

13.3 CONTINUATION AFTER AN ERROR OR TIMEOUT ... 38

14 MOUSE CLICKS ... 39

14.1 ADDING A MOUSE CLICK .. 39

Badboy v2.1 User Documentation

 Page 4 of 128

14.2 WINDOW NAME, X AND Y POSITION .. 40

14.3 CAPTURING THE CLICK FROM AN EXISTING WINDOW ... 40

14.4 RESTORING WINDOW SIZE .. 40

14.5 CASCADING CLICK ITEMS .. 40

14.6 A COMMON PROBLEM: CAPTURING MODAL DIALOGS ... 41

14.7 DISADVANTAGES OF MOUSE CLICKS .. 41

15 ASSERTIONS .. 41

15.1 HOW ASSERTIONS WORK ... 41

15.2 ADDING ASSERTIONS ... 42

15.3 CHECKS ... 42

15.4 EASY ASSERTIONS.. 43

15.5 ASSERTION PROPERTIES .. 43

15.6 CASCADING ASSERTIONS ... 44

15.7 VIOLATION ACTIONS AND CONTINUATION .. 44

15.8 CAPTURING A SCREENSHOT ... 44

15.9 WAITING FOR ASSERTIONS TO PASS .. 44

16 CONTENT CHECKS .. 45

16.1 CONTENT CHECK PROPERTIES .. 45

16.2 REGULAR EXPRESSIONS .. 46

16.3 MATCHING AGAINST NORMALIZED BODY CONTENT... 46

16.4 COMMON PROBLEMS .. 46

17 SUMMARY CHECKS .. 46

17.1 ADDING A SUMMARY CHECK ... 47

17.2 SUMMARY CHECK PROPERTIES... 47

17.3 CHOOSING WHICH SUMMARY TO CHECK ... 48

17.4 SETTING VALUES TO CHECK ... 48

17.5 COMBINING VALUE CHECKS .. 48

18 JSCRIPT CHECKS ... 48

18.1 ADDING A JSCRIPT CHECK ... 48

18.2 JSCRIPT CHECK PROPERTIES .. 49

18.3 SELECTING THE FRAME TO USE .. 49

18.4 WRITING JAVASCRIPT FOR JSCRIPT CHECKS .. 49

19 TAKING SCREEN SHOTS.. 50

19.1 CAPTURING A SCREEN SHOT MANUALLY .. 50

19.2 CAPTURING A SCREEN SHOT AS PART OF YOUR SCRIPT .. 51

19.3 CAPTURING A SCREEN SHOT AUTOMATICALLY WHEN AN ASSERTION FAILS ... 51

19.4 USING SCREEN SHOTS FOR MANUAL REVIEWS .. 51

19.5 CAPTURING SCREEN SHOTS OF RESPONSE TIME GRAPHS .. 52

20 CREATING REPORTS ... 52

20.1 HTML REPORTS ... 52

20.2 SAVING AN HTML REPORT AS PART OF YOUR SCRIPT ... 54

Badboy v2.1 User Documentation

 Page 5 of 128

20.3 INCLUDING SCREEN SHOTS IN YOUR REPORT ... 54

20.4 EXPORTING RAW XML ... 55

20.5 GENERATING CUSTOM REPORTS .. 55

21 HANDLING POPUP MESSAGE BOXES ... 55

21.1 RECORDING MESSAGE BOXES .. 56

21.2 MESSAGE BOX PLAYBACK ... 56

21.3 VIEWING MESSAGE BOXES IN RESPONSES .. 57

21.4 USING ASSERTIONS WITH MESSAGE BOXES .. 57

22 HANDLING FILE DOWNLOADS ... 58

22.1 ADDING FILE DOWNLOAD HANDLERS .. 58

22.2 CONFIGURATION ... 59

23 SLOWING DOWN PLAYBACK WITH TIMERS ... 60

23.1 ADDING TIMERS.. 60

23.2 WAITING FOR FIXED TIME ... 61

23.3 WAITING FOR A RANDOM TIME ... 61

23.4 USING CHECKS WITH TIMERS ... 61

23.5 CASCADING TIMERS ... 61

24 KEYBOARD INPUT .. 62

24.1 ADDING A KEYS ITEM ... 62

24.2 WINDOW FOCUS .. 63

24.3 HANDLING MODAL WINDOWS .. 63

24.4 SENDING SPECIAL CHARACTERS .. 63

24.5 KEY COMBINATIONS .. 63

24.6 VIRTUAL KEY TABLE ... 64

25 SPIDERING ... 65

25.1 HOW SPIDERING WORKS .. 65

25.2 SPIDER LOOPING ... 66

25.3 NAVIGATION OPTIONS ... 66

25.4 SETTING ASSERTIONS ... 66

25.5 POPULATING FORMS.. 67

25.6 PERFORMING ACTIONS ON SPIDERED PAGES .. 67

25.7 RANDOM WALKING ... 67

25.8 CONTROLLING LOOPING YOURSELF ... 68

25.9 DETECTING ERRORS ... 68

25.10 RECURSIVE SPIDERING ... 68

26 SENDING EMAIL ... 69

26.1 CREATING SEND EMAIL ITEMS ... 69

26.2 SETTING THE EMAIL CONTENT ... 70

26.3 CONFIGURING YOUR EMAIL SETTINGS ... 71

26.4 SENDING AN EMAIL FROM A FILE .. 71

Badboy v2.1 User Documentation

 Page 6 of 128

27 USING JAVASCRIPT/JSCRIPT .. 71

27.1 USING JSCRIPT ... 71

27.2 ADDING JSCRIPT ITEMS TO YOUR SCRIPT .. 72

27.3 EDITING JSCRIPT PROPERTIES .. 72

27.4 PLUGIN PRIVILEGES ... 73

28 ADVANCED JSCRIPT ... 73

29 USING REFERENCES ... 75

29.1 CREATING AND DELETING REFERENCES .. 75

29.2 IMPORTING REFERENCES .. 76

29.3 MAPPING REFERENCES TO TESTS .. 76

29.4 VIEWING REFERENCE INFORMATION ... 77

30 USING BADBOY WITH JMETER ... 77

30.1 LIMITATIONS .. 77

31 USING THE COMMAND LINE RUNNER ... 78

31.1 LIMITATIONS OF THE BADBOY WEB TEST ENGINE .. 78

31.2 RUNNING A COMMAND LINE SCRIPT ... 78

31.3 COMMAND LINE OPTIONS .. 79

31.4 HTTP AUTHENTICATION AND PROXY AUTHENTICATION .. 80

32 AGGREGATING SCRIPTS ... 80

32.1 CREATING AN AGGREGATE SCRIPT .. 80

32.2 PASSING VARIABLES TO THE AGGREGATED SCRIPT ... 81

33 AUTOMATIC VARIABLES .. 81

33.1 ADDING AUTOMATIC VARIABLES .. 81

33.2 CHANGES TO AUTOMATIC VARIABLES .. 82

33.3 PREDEFINED AUTOMATIC VARIABLES .. 82

34 CUSTOM TOOLBOX ITEMS ... 82

34.1 CREATING A CUSTOM TOOLBOX ITEM ... 83

34.2 USING CUSTOM TOOLBOX ITEMS ... 83

34.3 UPDATING A CUSTOM TOOLBOX ITEM ... 84

34.4 YOUR TOOLBOX FILE .. 84

35 FILE FORMATS ... 84

35.1 BINARY FORMAT ... 84

35.2 XML FORMAT .. 84

35.3 BADBOY XML .. 84

36 SCHEDULING BADBOY SCRIPTS .. 85

36.1 SCHEDULING MANUALLY .. 85

36.2 SCHEDULING AS PART OF YOUR SCRIPT .. 86

36.3 DELETING A SCHEDULE ... 86

Badboy v2.1 User Documentation

 Page 7 of 128

37 USING BADBOY WITH AJAX WEB SITES .. 86

37.1 UNDERSTANDING AJAX REQUESTS ... 87

37.2 RECORDING AJAX PAGES IN REQUEST MODE ... 87

37.3 PLAYBACK OF AJAX REQUESTS .. 87

37.4 RECORDING AJAX PAGES IN NAVIGATION MODE .. 88

37.5 PLAYBACK OF AJAX PAGES IN NAVIGATION MODE .. 88

38 INTEGRATING BADBOY WL¢I ¸h¦w {9w±9wΩ{ [hG FILE .. 88

38.1 SETTING UP SERVER LOG FILE INTEGRATION ... 89

38.2 USING SERVER LOG FILE INTEGRATION .. 89

38.3 TROUBLE SHOOTING .. 90

39 .!5.h¸Ω{ 59±9[OPER FEATURES.. 90

39.1 EDITING SOURCE FILES DIRECTLY FROM BADBOY ... 90

39.2 EDITING SOURCE FILES FOR REQUESTS .. 91

39.3 MONITORING SOURCE FILES .. 91

39.4 MONITORING STEPS .. 92

39.5 CAPTURING YOUR LOG FILE .. 92

39.6 DOM VIEW ... 93

39.7 SYNTAX HIGHLIGHTING JAVASCRIPT EDITOR WITH AUTO-COMPLETE ... 93

39.8 JAVASCRIPT LOGGING .. 94

40 SHORTCUT KEYS .. 95

41 LOAD AND STRESS TESTING WITH BADBOY ... 96

41.1 THREADS ... 96

41.2 THREAD ITEMS.. 97

42 CREATING AND RUNNING THREAD ITEMS ... 97

42.1 CREATING THREAD ITEMS ... 97

42.2 RUNNING THREAD ITEMS .. 97

42.3 STOPPING THREAD ITEMS ... 98

43 BROWSER ENGINES ... 98

43.1 BROWSER ENGINES ... 98

44 CONFIGURING THREAD ITEMS ... 99

44.1 SETTING THE NUMBER OF THREADS .. 100

44.2 HOW LONG THREADS RUN .. 100

44.3 GRADUAL STARTING/STOPPING ... 101

44.4 THREAD LIMITATIONS .. 101

44.5 USING DIFFERENT DATA ACROSS THREADS .. 101

44.6 HTTP AUTHENTICATION AND PROXY AUTHENTICATION .. 102

45 VIEWING AND UNDERSTANDING THREAD RESULTS .. 102

45.1 ACCESSING THREAD DATA .. 102

45.2 VIEWING RESPONSE TIME GRAPHS ... 102

Badboy v2.1 User Documentation

 Page 8 of 128

45.3 SAVING RESPONSE TIME GRAPHS ... 103

45.4 SAVING RAW RESPONSE TIME DATA ... 103

45.5 SAVING TIME AVERAGE DATA .. 103

46 GLOBAL THREADS (LEGACY FUNCTION) ... 104

46.1 GLOBAL THREADS - THREAD CONTROL DIALOG ... 104

46.2 THREAD STATISTICS ... 105

47 AUTOMATING BADBOY WITH OLE ... 106

47.1 OLE INTERFACE API .. 106

48 SCRIPT ITEM PROPERTY REFERENCE .. 111

48.1 ACCESSING PROPERTIES .. 111

48.2 AVAILABLE PROPERTIES .. 111

49 BADBOY PLUGINS .. 122

49.1 INSTALLING A PLUGIN... 123

49.2 STRUCTURE OF PLUGINS ... 123

49.3 PLUGIN TOOLS .. 123

49.4 THE BADBOY PLUGIN OBJECT .. 124

49.5 APPENDIX: LIST OF BADBOY PREFERENCES ACCESSIBLE VIA SETPREFERENCE AND GETPREFERENCE FUNCTIONS 127

50 ¦{LbD .!5.h¸Ω{ D¦L CROM THE COMMAND LINE ... 127

Badboy v2.1 User Documentation

 Page 9 of 128

Table of Figures

FIGURE 1: SEARCH/REPLACE ... 13

FIGURE 2: NAVIGATION PROPERTIES .. 18

FIGURE 3: VARIABLE VIEW ... 22

FIGURE 4: VARIABLE SETTER PROPERTIES .. 23

FIGURE 5: DATA SOURCE PROPERTIES .. 28

FIGURE 6: DATA SOURCE PREFERENCES .. 29

FIGURE 7: FORM POPULATOR PROPERTIES .. 31

FIGURE 8: SUMMARY VIEW .. 35

FIGURE 9: CONFIGURE TIMEOUT ... 37

FIGURE 10: ERROR HANDLING .. 37

FIGURE 11: CLICK PROPERTIES .. 39

FIGURE 12: ASSERTION PROPERTIES ... 43

FIGURE 13: CONTENT CHECK .. 45

FIGURE 14: SUMMARY CHECK PROPERTIES.. 47

FIGURE 15: JSCRIPT RESPONSE CHECK PROPERTIES ... 49

FIGURE 16: HTML REPORT .. 53

FIGURE 17: SAVE ITEM PROPERTIES ... 54

FIGURE 18: MESSAGE BOX ... 56

FIGURE 19: DOWNLOAD HANDLER .. 59

FIGURE 20: KEYS PROPERTY ... 62

FIGURE 21: EMAIL ITEM PROPERTIES ... 70

FIGURE 22: JSCRIPT EDIT PROPERTIES .. 72

FIGURE 23: REFERENCE DETAILS.. 75

FIGURE 24: REFERENCE VIEW ... 76

FIGURE 25: REFERENCE SUMMARY DISPLAY .. 77

FIGURE 26: AUTOMATIC VARIABLES TAB .. 82

FIGURE 27: CUSTOM TOOLBOX ITEM ... 83

FIGURE 28: SCHEDULE TASK PROPERTIES .. 85

FIGURE 29: SERVER LOG FILE CONFIGURATION .. 89

FIGURE 30: DOM VIEW .. 93

FIGURE 31: JAVASCRIPT EDITOR AUTO-COMPLETE ... 94

FIGURE 32: THREAD ITEM PROPERTIES ... 99

FIGURE 33: GRAPH VIEW ... 103

FIGURE 34: THREAD CONTROL DIALOG ... 104

Badboy v2.1 User Documentation

 Page 10 of 128

1 Introduct ion

Welcome to Badboy!

Badboy is an application which makes testing and building Web applications easier by combining a
capture/replay style testing tool with live diagnostics on the activities your browser is performing while you
navigate your site.

¶ If you have a development background then you are probably used to using a debugger to step
through your code and see what is happening inside. You can think of Badboy as a debugger for
your browser. Read about all the great features for developers!

¶ If you do testing or Quality Assurance work then you can use Badboy as a powerful test
automation tool to help you record and play back tests of your web site or application.

If you are new to Badboy, why not take the tutorial? Select "Help" and then "Tutorial" from the menu to
get started! Or, read on to find out more about what Badboy does!

2 Basic Operation

Badboy works by monitoring the activity of Internet Explorer as you browse, and recording interesting
events so that you can see them later and, if you wish, replay them.

2.1 Recording

Recording can be turned on and off. You can tell if Badboy is recording by looking at the title bar of the
window.

When you press the Play button, recording is automatically turned off. After the play finishes, you can turn
recording on again by clicking on the red record button on the toolbar.

While recording, you should let each request completely finish loading before interacting with the browser
again. This is important because if you generate a new request while a previous one is still loading, the
new request may be treated as a sub frame or other non-recorded result of the first request.

2.2 Creating Suites, Tests and Steps

When working with a web site it is often useful to break up a sequence of browser interactions into logical
steps. For example, you might like to have your first step as ñLogin to Yahoo Mailò, and your second step
as ñNavigate to my Inboxò, and the final step as ñSend a message to my motherò. Each of these steps
might contain more than one interaction with the browser. In Badboy, you can create "Steps" to reflect this
by clicking on the New Step button on the toolbar.

Badboy v2.1 User Documentation

 Page 11 of 128

If you want to organize your Script even more, you can create Suites and Tests to place your Steps into.

But if you don't want to you don't have to - you can just create Steps with the New Step button if you like.

See Suites, Tests and Templates for more information about organizing your Script with Suites and Tests.

When you replay a script, Badboy will automatically stop at each step so you can review the screen. If
you push Play again, the script will continue from the next step. If you want to play your whole script
without stopping, use the "double" play button instead, which will play your whole script from beginning to
end.

2.3 The Script Tree

The Script tree is displayed in the left hand pane of the main window. It displays all the requests that you
have recorded, arranged into the steps that you create while recording, along with any other items you
have added to your script.

You can customize the items in the tree by double clicking on them.

Badboy v2.1 User Documentation

 Page 12 of 128

2.4 Playing

You can replay a sequence you have recorded at any time by clicking on the Play button. If you want to
play one Step at a time, use the Play Request button, shown below. There are also stop and rewind
buttons to stop a currently playing script and rewind to a previous step respectively. If you want to play
your whole script without stopping anywhere, use the "double" play button.

What else can Badboy do?

We've hardly scratched the surface here of all the things that Badboy can do. To learn more, try the
following sections

¶ See Automating Your Scripts to find out more about customizing Badboy's playback.

¶ See Variables and Looping to see how to use Variables to create loops and sophisticated
playback patterns.

¶ See Assertions to find out how make Badboy automatically check your website for errors.

3 Automating Scripts

Being able to replay back a sequence of browsing activities repeatedly can be a very useful mechanism
for debugging and testing your web site. Unfortunately, playing back exactly the same requests that were
used on a previous occasion frequently does not satisfy the requirements of complex web sites.

Some examples of scenarios where this can occur are:

¶ An identifier that is entered must be unique. Entering the same value twice generates an error. This
would occur, for example, if you tried to make a script that would register for an account with a user Id.
The first time it ran it would succeed, but on replay trying to sign up for the same Id again would generate
an error

¶ You recorded the script on one server (for example, your local development box), but you would like to
run it against a different server. You need a way to replace the host name to which the requests are
directed.

Badboy helps you deal with these problems in several ways. These are Editing Parameters, Script
Variables, and a variety of tools to help you such as Search and Replace. Read on to find out more about
these!

3.1 Editing Parameters and Hosts

Badboy allows you to edit the values of request parameters and host names in your script. This is very
easy to do - just double click on the request or parameter that you would like to change the value of.

Badboy v2.1 User Documentation

 Page 13 of 128

Using this feature you can find and change any values that need to be updated before you run your script.

3.2 Searching and Replacing

If you have a value that you need to change throughout your script then finding and editing every
occurrence of that value would be very long and tedious process. To help with this, Badboy has a Search
and Replace feature. You can invoke the Search and Replace function by selecting "Search/Replace"
from the Badboy's Edit menu. Alternatively you can just press "F3" to show the dialog. The figure below
shows the search/replace dialog:

Figure 1: Search/Replace

3.3 Property Mask

Sometimes when searching and replacing you only want to search for specific properties of an item, such
as its name, id, or other property. If you want to filter the properties that are considered in the search,
specify the name of the property to match on in the Mask field. Note that you can use a regular
expression in this field to match multiple properties or a range of properties matching a particular pattern.

Badboy v2.1 User Documentation

 Page 14 of 128

After you have opened the search dialog with F3 and entered your text, pressing F3 again will search for
the text. You can keep pressing F3 to find the next item containing your text.

3.4 Variables

If you have values that change often you will quickly get tired of having to search and replace in your
script. To alleviate this Badboy provides a feature called ñscript variablesò. Script variables are displayed
in the "Variables Tab" (usually in the bottom left corner of the Badboy window) and contain values that
you can reference by name throughout your script. This allows you to include references to variables in
your parameter names and host names by using the syntax "${variable name}" to include a variable
value. In this way you can create scripts that share the same value in many places and you can maintain
it in just one place.

To add a variable, just right click on an item in the tree on the item that you would like to become
controlled by the variable, and choose "Add Variable". To edit a variable's value, just double click on the
variable in the Variable View and changes its value in the properties box.

3.5 Linking Values

Often the same parameter value is sent many times in a script. Badboy offers a feature called "linking" to
help you find all the places where it the value is occurs and replace them with variables. Linking
automatically joins all the separate instances of a recurring value to a single variable. If you use a linked
variable, you only have to create the variable once and from then on all the items in your script with the
same value will be converted to use the variable. To do this, simply add a variable by right clicking on a
parameter in the script and choose "Add Linked Variable". After adding the variable, Badboy will search
for all values that are the same as the one you selected and change their values to reference the new
variable. Linking is especially useful because Badboy will also automatically replace values for new items

Badboy v2.1 User Documentation

 Page 15 of 128

that you add or record in your script with variable references whenever or however they appear. This way
you don't need to remember to add variable references as you work with your script.

Badboy has a special tool to help you link a variable to host names in your script. This is very useful if you
would like to test your script against a different host to the one you recorded on. To do this, just choose
"Create Hostname Variable..." from the Tools menu in Badboy's main window.

3.6 Using the Date/Dime to Create Unique Parameter Values

Using Variables you can create scripts that can be easily run repeatedly to test a defect, validate code as
you write it, or a myriad of other uses. It is a very common occurrence, however, to need variables that
are guaranteed to be unique each time the script is played. The scenario of creating a user account is a
good example. To help with this, Badboy makes it easy to automatically set variable values to a unique
value. You can do this by adding an Increment script item (available in the Toolbox) at the start of your
script. You can place increments into your script wherever you want new values for your Variable.
Increments have many other abilities and features - for more information on Increments, see the topic
Incrementing Variables.

There are many more advanced uses of variables to automate your scripts. To learn more, see the
following sections:

¶ Using Variables

¶ Using Data Sources

¶ Using Increments

4 Recording Modes

Badboy offers two different recording modes that you can use. These are:

¶ Request Mode (the default mode)

¶ Navigation Mode (activated using toolbar button or by holding down Ctrl-Alt while recording)

You can see which recording mode is being used by looking at the 'N' button on the Toolbar:

4.1 Request Mode

In this mode Badboy records the HTTP requests that are sent by the browser to the server, including all
their parameters and other information. In a simplistic sense, you can think about Requests simply as
URLs, such as the address for your web page. There are advantages using this mode:

¶ Requests are independent of the layout and appearance of the web pages you are testing. This
means that if the layout of the web pages changes your test will still work.

¶ Requests work excellently with Badboy's Load Testing features and they also can be exported to
JMeter for doing load and stress testing. Although Badboy can load test pages using Navigations,
they do not work as efficiently - so if you need to do load testing at very high levels then recording
your tests with Requests may work better for you.

Badboy v2.1 User Documentation

 Page 16 of 128

However there are also some important disadvantages:

¶ In some cases Requests can be more difficult to get working. This is because Requests
completely replace the information sent by the web page to the server with the recorded HTTP
information. Sometimes web pages put information into the page which has to be specially
calculated for each time a user goes to the page. In that case, Requests need to have their
Parameters changed to use variables after you record them (see Using Variables for more
information).

¶ While Requests are independent of the page layout and appearance, this can sometimes be a
drawback. For example, imagine that you edit a page and accidentally delete the "logon" button.
You would probably like your test to fail so that you could find and fix the problem. However when
you use Requests this will not happen! Instead, Badboy will play the Request the same way
regardless of whether the logon button is there or not. Of course, you could explicitly check
whether the Logon button is there by using an Assertion (see Assertions), but to do that you
would have to create the Assertion in advance - it would be very laborious to check every item
you record this way. Instead, Navigation Mode can help you overcome this problem.

4.2 Navigation Mode

In this mode Badboy will record which browser element you clicked on. When you play back, rather than
replaying the HTTP request that was sent previously, Badboy will find the original browser element that
you clicked on when recording and simulate a click on it.

Navigation Mode has the following advantages:

¶ For some pages it is much easier to get working. This is especially true for complex pages such
as Logon pages. The reason is that the Navigation is replaying the interaction to the browser and
letting the browser do the work of creating the request.

¶ Because Navigations explicitly exercise the user interface they are much better at catching
problems if the interface is broken. In the example above for Request Mode, if you had recorded
your "logon" button as a Navigation your test would fail if somebody deleted the button from the
page.

The main disadvantage of Navigation mode is that you often cannot use this mode for running load tests.
This is because the Load Test engine runs without displaying any user interface, and hence it cannot
execute Navigations. Another disadvantage is that your tests will depend on the correct items being
present in the user interface to work. Thus if your main goal is to just test that the functionality of your web
site works without caring about the user interface, Request mode may be better.

The difference between these two modes is very important. The choice you make in recording will have a
big effect on how well your scripts adapt to changes in your web site. See below for more information on
deciding which mode you should use.

For more information on Navigations, see the Navigations topic.

Badboy v2.1 User Documentation

 Page 17 of 128

5 Navigations

Navigations are a kind of item in Badboy that records clicks or activation of user interface elements in the
browser window. When you record a navigation, it finds the browser element that was clicked on (or
navigated in another way, for example, by hitting space or enter) and remembers it. When you play back,
Badboy finds the same element again and simulates a click on it again so that the browser performs the
same navigation again.

5.1 Recording Navigations

By default, Badboy records Requests instead of Navigations. However you can easily switch recording
modes at any time to record Navigations instead. You can do this by the following methods:

¶ Click the 'N' button on the Toolbar to toggle between modes

¶ Press Ctrl-Alt-N to toggle between modes

¶ To switch modes while recording just a single item simply hold the Control and Alt keys down
while clicking on or navigating the page. This will change the record mode only while you hold the
keys down.

5.2 Types of Navigation Items

Badboy will record different kinds of Navigation Item in your script depending on what kind of element you
click on and also how that element is represented in the page you are recording. The table below shows
the three different kinds of item you will see:

Navigation Type Description

Represents a click on a link. This may be any kind of link

including an image link or other non-textual content.

A click on a button. These are usually buttons in forms such

as Submit buttons.

A click on a miscellaneous item on the page. Frequently

these occur when the page has used JavaScript to respond

to "on-click" clicks on page elements resulting in a page

navigation or a form submission.

Badboy v2.1 User Documentation

 Page 18 of 128

5.3 Navigation References

Web pages can often change quite significantly in their layout, size and shape, and can often have many
elements that look or appear the same. Because of this, Badboy uses several different ways of identifying
elements in order to ensure that it finds the correct one that you originally recorded when playing back.
The information that Badboy uses to identify the element is called the "Reference" to the element. When
you record a click on an element, Badboy uses the following logic to find a reference for it:

¶ If it has an id then it will record the id of the element

¶ If it has a unique name assigned then it will record the name

¶ If it is a link or a button and has distinctive visible text (such as the label on the button) then it will
record the text and identify the item via it's text

¶ If none of the other methods apply, it will identify the element by its position in the browser DOM,
using a JavaScript expression.

5.4 Navigation Properties

If you wish you can open the properties of the Navigation and set the reference information yourself. The
figure below shows how the properties dialog looks:

Figure 2: Navigation Properties

Badboy v2.1 User Documentation

 Page 19 of 128

The following table describes the different properties you can set:

Property Description

Element
Reference

This identifies the element to be navigated. How this text is interpreted depends on
the Reference Type.

Element Type

Determines how the reference text is used.

¶ For Visible Text, the reference is interpreted as the label or visible page
content that the element displays (e.g. the displayed content for a link, the
text on a button or a tooltip describing the item).

¶ For Id/Name, the reference is interpreted as an id or name set on the
element to be navigated.

¶ If you choose "JavaScript Reference", Badboy will execute the text as
JavaScript which should return the item to be navigated. You can use this
to write more complex logic to find the element to be navigated.

Element Filter

Sets the kind of elements that should be considered for matching the reference text.
This helps make sure Badboy chooses the correct element by screening out all
elements that do not match the filter. You can choose "Links", "Buttons" or "All
Elements"

Index

Causes Badboy to use the specified occurrence of the matched element on the
page. For example, if there are three buttons named 'Logout' on the page, you can
make Badboy use the third one by specifying "2" in the Index property. Note that
this property is "zero-based", so the first occurrence (the default) is specified using
"0" and the second is specified using "1" and so on.

Use Regex
Match

Causes the Navigation to treat the Reference as a regular expression when
attempting to match elements on the page. This is useful if the element you wish to
navigation changes for each playback but has a definable form that you can
describe with a regular expression. This option only applies to the "Visible Text
Reference" reference type.

If you are having problems getting your navigation to locate the right element you can right click on the
Navigation and choose "Highlight Element" to show which element on the page will be targeted. If it
targets the wrong one then you can increment the "Index" option in the properties to cause it to find the
next item in the page until it finds the correct element.

Badboy v2.1 User Documentation

 Page 20 of 128

5.5 Auto-Record of Form Populators

When pages contain fields that allow the user to enter information you will usually want any changes that
are made to the fields to also be made when your Navigations are played back. For this reason, Badboy
automatically records Form Populators for you to set any changed fields on forms on the page. Note that
Badboy will only record a Form Populator if one of the forms on the page has been changed from its state
when the page was first loaded.

5.6 Passive Navigations

Badboy supports two types of Navigation: Passive and Active.

¶ Active Navigations are actions that cause (or are expected to cause) the browser to load a new
page. By default, Badboy will wait for one of the open pages or frames to reload before continuing
playing the script after a Passive Navigation is executed. Active Navigations are the most
common kind and are typical for normal links in a web site.

¶ Passive Navigations are a special kind of Navigation in that they do not expect a new page to
load in the browser. These Navigations often perform no interaction with the server at all,
although they may still change or activate parts of the browser window. A good example of a
Passive Navigation is the frequent case where a user forgets to enter data into a form and a
JavaScript check is done to remind them to enter it. The check might show a message box, or
highlight the field on the page. However because it does not submit the form, no part of the page
reloads from the server. Passive Navigations are especially important for web sites that use the
so-called "AJAX" design methodology, since this kind of design often performs many background
interactions that do not reload pages.

When Navigations are recorded, Badboy automatically notices whether there was a page load and sets
the "Passive Navigation" option for you.

For more information see the topic Recording Modes for more information about Navigations and how
Badboy's recording of them works.

6 Tests and Templates

This section explains how Badboy allows you to structure your scripts using Suites, Tests and Templates.

6.1 Suites and Test Items

Complex web applications will often have a large number of separate areas of functionality that can be
tested independently of each other. Scripts for testing such web sites can end up being very large, so it is
very useful to divide the tests into a hierarchy so that people looking the test can understand the different
parts more easily.

In earlier versions of Badboy you could use Steps to structure your scripts, and by placing steps inside
each other a whole hierarchy could be modeled. This worked well, but many people wanted to be able to
make the structure of their scripts clearer, so to help with this, Badboy 2.0 has introduced two new items:

¶ Tests - shown as a notepad style icon:

¶ Suites - shown as a folder style icon:

Suites and Tests are provided to add to your Badboy script to help to structure it so that it is easy to

understand, and to make reports and other output clearer.

Badboy v2.1 User Documentation

 Page 21 of 128

Badboy doesn't enforce any rules about how you use and mix Tests, Suites and Steps in your script. If
you prefer, you can make your whole script from Steps as in previous versions of Badboy. Or, you can
place Suites and Tests inside Steps or Steps inside Tests and Suites. You can choose what kind of item
(Test, Suite, Step) you would like Badboy to use at the root of your Script Tree in Badboy's preferences.

6.2 Advantages to using Tests

There are a number of advantages to using Tests to structure your scripts:

¶ Tests make your script easier to understand

¶ Tests can extend Templates to save you time and make maintaining your tests easier (see
below)

¶ You can add References to Tests

6.3 Adding Suites and Tests to your Script

The easiest way to add new Suites and Tests to your script is to use the Toolbar button. This will create a
new Test or Suite at the top level in your script. From there you can drag it to the position you want it to
go with the mouse.

You can also add Tests and Suites to your script by dragging them from the Toolbox and dropping them
in your script where you want the test to go.

6.4 Using Tests with Templates

One of the most powerful reasons to use Tests in your script is their support for Test Templates. Test
Templates allow you to easily make many tests that follow the same outline without duplicating the
structure of the Test many times over in your script. See the section Test Templates for more information
about using Test Templates.

7 Variables

Variables are a key feature of Badboy. They let you customize how script items are played back at run
time so that you can create scripts that behave intelligently rather than simply repeating the same action
over and over again. This section describes how you can add and use variables in Badboy scripts.

7.1 Adding Variables

There are several ways to add variables in Badboy. First, you can add them directly by right-clicking in the
variable window at the bottom left corner of the screen.

Badboy v2.1 User Documentation

 Page 22 of 128

In order to make adding variables even easier Badboy offers a couple of other ways to do it:

¶ Right click on a parameter in the script tree and select "Add Variable..." or "Add Linked Variable".
The first of these will simply add a variable with the same name as the parameter. The second
will add a variable and search for the value throughout all the other parameters in the script,
linking all parameters with the same value as the variable to it.

¶ Use the "Tools->Create Hostname Variable" option in the menu. This is specifically for creating a
variable to control the host name of all your requests.

7.2 Viewing Variables

You can see all the variables you have added to your script in the Variable View. This view is a tab in the
Summary View which is normally at the bottom left hand corner of your Badboy Window (although you
can move it around by dragging it). The figure below shows how the Variable View looks:

Figure 3: Variable View

7.3 Editing Variables

Editing the value of a variable can be performed by opening its properties dialog - just right click on the
variable and select "Properties".

7.4 Using Variables

You can use variables nearly anywhere that you can enter a value into Badboy. To use a variable, refer to
it by placing it inside curly brackets with a dollar sign in front. For example, to use a variable "foo", you
could set a field in Badboy to be "${foo}". You can also use a variable embedded in the middle of other
text. For example, if a variable is called "animal" and has a value "tree frog", then I can make a sentence
"the ${animal} is green" using the variable. When Badboy plays your script it will substitute the values of
variables into where you have put variable references.

7.5 Variable Value Lists

Variables in Badboy have two components:

¶ The current value (this is the value that is used when the variable is evaluated in your script)

¶ A list of future values

You can set the list of values that a variable has by opening the variable properties dialog (double click in
the Variable View or right click and select "Properties"). When you do this you can add a list of values to
the variable. If you want to make an expression that refers to a particular value in a variable's value list
then you can place the index of the value in square brackets after the variable's name. For example,
${animal[3]} would refer to the fourth value in the value list for the variable "animal". (Note that variable
values are numbered starting at zero!).

Badboy v2.1 User Documentation

 Page 23 of 128

7.6 Incrementing Variables

A powerful way of using variables becomes apparent when you combine them with "Increments".
Incrementing simply means to change the value of a variable to a new value, based on a strategy that
you can specify. By default, Badboy will first look for the next value in the variables Value List (see
below). If the variable doesn't have a list of values set then it will just assign a random value to the
variable. See Incrementing Variables for more information about using Increments.

7.7 Setting Variables as Part of your Script

Sometimes you may want to set a variable as part of playing your script. Often it is useful for a variable to
contain the result of an operation that your script has performed so that it can be used elsewhere. For
example, if your script creates an "Order", you might make a variable to contain the order number so that
it can be used in other parts of your script later on. To help you do this, Badboy provides a "Variable
Setter" item in the Toolbox.

The Variable Setter properties dialog offers a number of ways for you to set the value for a variable.
These include:

¶ Setting a list of fixed values separated by commas

¶ Setting values by extracting content from the browser window (based on a regular expression
match)

¶ Loading content from a file (optionally, parsing that content into variables in CSV form)

The figure below shows the Variable Setter Properties dialog and the options that are available:

Figure 4: Variable Setter Properties

Badboy v2.1 User Documentation

 Page 24 of 128

If you choose the "Content of File" option then you can also optionally choose to parse the content of the
file as CSV (Comma Separated Values) which will then set variables in Badboy with the column names
found in the parsed file in addition to the original variable you selected to set in your Variable Setter. This
can be an effective and quick way to import data into Badboy from many tools which can export in CSV
format.

7.8 Regular Expression Notes

Regular expressions are a particularly powerful way to set variables, because they allow you to scan the
contents of the browser window and pick specific elements into your variable. The variable can then be
used in playing other items later in the script. If the expression matches multiple times then you can loop
over the values of the variable by setting the properties in a Step to iterate over the variable.

Sometimes you want to set a variable "opportunistically". That is, you don't know when a value will appear
on the page, but if it is you want to store it. To do this, you can select the "Do Not Overwrite with Blank"
option so that Badboy will only update the value and not set it to blank if a matching value is not found on
the page.

Good references on Regular Expressions can be found by searching the Internet; however some simple
notes on how Badboy implements the expressions are as follows:

¶ Brackets "(" and ")" are automatically special characters. If you really want to match a bracket
then you must escape it with a back slash as "\)"

¶ If you provide a sub-expression using brackets then Badboy will populate the variable with the
first sub-expression. If you do not provide a sub-expression then Badboy will place the match of
the whole expression into the variable. For example, assume your content is "tree frogs live long".
The expression "tree.*long" will return a match of the whole sentence because there is no sub-
expression. However the match "tree (.*) long" will return the match of the sub-expression in
brackets, "frogs live".

¶ By default Badboy will match the regular expression against the main Badboy window. If you
want to match against a popup window, set the "target window" in the Play Properties for the
Variable Setter.

¶ You can make an expression ignore case in matching by prefixing it with (?i). For example, the
expression "(?i)Green Frog" would match "green frog".

¶ By default wildcards in expressions match across new lines. For example "Green.*Frog" would
match even if "Green" and "Frog" appear on separate lines in the HTML source for the page. You
can turn this behavior off by prefixing "(?-s)" before your expression. For example: "(?-s)
Green.*Frog" would only match if the words "Green" and "Frog" appear on the same line in the
HTML source for the page.

7.9 Automatic Variables

Badboy has a special kind of variable called an "Automatic Variable". See the section Automatic Variables
for more information on these.

8 Incrementing Variables

Incrementing means to change the value of a variable to a new value, based on a strategy that you can
specify. Incrementing variables let you make your scripts run for many different values of a variable.

To cause a variable to be incremented as part of your script, drag an Increment item from your Toolbox to
the place in your script where you would like the increment to occur. The diagram below shows how an
Increment looks in your script:

Badboy v2.1 User Documentation

 Page 25 of 128

8.1 Increment Strategies

The new value assigned to a variable depends on the "strategy" you choose for the Increment. The
default strategy that Badboy uses works like this:

1. Look for the next value from the variable's value list (see Variable Value Lists)
2. Look for the next value from an ODBC Data Source set by the user (see Using Data Sources)
3. If neither of the above is present, a random value will be generated for the variable using the

current time and the id of the thread which is running the Badboy script.

If you wish, you can control exactly how Badboy increments the variable by setting the properties of the
increment item. The table below shows the different strategies that you can assign and explains how they
operate:

Strategy Description

Default

A combination of the "List Value" and "Random Integer" strategies.
If the variable has a value list then it will use the "List Value"
strategy, otherwise it will use the "Random Integer" strategy; if it has
one.

Random
Integer

Appends a random integer based on the thread id and current time
to the variable's current value, replacing any other numeric
characters at the end of the value. For example, "treefrog1" might
become "treefrog65267"

Value List

Uses the next value in the variable's value list. The value list might
have been assigned by a Variable Setter, or it might come from an
ODBC data source, or it might have been manually set by the user.
(see Variable Value Lists)

Sequential
Integer

Adds 1 to the value of the number at the end of the current value.
For example, if the current value is "treefrog1", then incrementing
would make it "treefrog2".

Badboy v2.1 User Documentation

 Page 26 of 128

9 Using Data Sources

Sophisticated applications may need to test the same script using a whole range of values for their input.
For example you may want to test all the boundary conditions for an operation ï what happens when
somebody orders quantities of 0, 5, 10, 1000 of a particular item? Or perhaps you want to test that
ordering of every item in your warehouse works. Doing these kind of operations where you want to run
the same script over many different values for a parameter (or variable) is greatly eased by connecting
your scripts to a Data Source such as a database, spreadsheet or text file.

Badboy supports reading values for variables through two different techniques:

¶ Using a Variable Setter tool from the Toolbox

¶ Using ODBC Data Sources to read directly from a Database or Spreadsheet

This section describes the second of these options: how you can connect Badboy directly to a source of

data such as a database or a spreadsheet. This means that if you set up an ODBC data source (which

could be anything from an Oracle database to a comma separated text file) then Badboy can read

variable values from it and when variables are incremented in your script they will iterate through the

values in your source.

This help uses an Excel file as an example ï but remember that you can use any ODBC source.

Another way to read data from Excel is to first export the spreadsheet data in CSV format by selecting
File => Save As and then choosing CSV as the file format in Excel. Once exported as CSV, you can read
data into your variables using the "Contents of File" option in a Variable Setter tool.

9.1 Data Source Requirements

By default Badboy requires data sources to satisfy certain requirements. (Note: you can change or avoid
these requirements if you know how to write SQL for your Data Source. See the information on Using
Custom SQL later in this topic for more information.)

1. All the values for all variables must appear in a single table

2. The table must have column headings that match the variable names that you want to be read

3. The values for the variables should appear under the corresponding headings

4. You may optionally include a column called ñSEQò. If this column exists then it will be used to
order the values that are read from the data source. It must be a sortable data type (plain integer
values are suggested). Note that if the column does not exist then there are no guarantees about
the order in which the values will be used.

Here is how an example Excel spreadsheet satisfying these criteria might look:

Badboy v2.1 User Documentation

 Page 27 of 128

This shows how you would create an excel file to load values for variables ñPiecesò and ñweightò. Note
that all names are case sensitive, and that in some cases the ODBC may convert the names to upper
case without asking you. You will need to experiment with your data source to get this right.

Sometimes you might find that the wrong part of your spreadsheet gets exported by Excel to Badboy, or
even a subset of the rows you want or nothing at all. The solution to this is to define the area you want
Excel to export by selecting it and pressing Ctrl-F3. Then you can give it a name and when you configure
the data source in Badboy the name should show up for you to choose as a table. This allows you to
choose exactly the rows you want from your spreadsheet and ensures that Excel sends the correct data.

9.2 Adding a Data Source

Data Sources are configured in Badboy by adding "Data Source" items from your Toolbox into your script.

The image below shows how a Data Source item looks after adding to a script:

9.3 Setting the Properties

When you add a Data Source item to your script you will be given a choice of all the ODBC data sources
on your system. Some data sources must be set up in advance using the Control Panel on your computer
(from the Start menu choose Settings->Control Panel and look for the ñData Sourcesò applet, which may
be under Administrative Tools depending on your version of windows). Other data sources, for example
Excel files, can be accessed directly from Badboy. For Excel files there should be an ñExcel Filesò option
in the drop down menu (you must have Excel along with its ODBC drivers installed). Select this option
and Badboy will read the file and show you the worksheets inside.

You should then select the worksheet from which you would like Badboy to load values. Once you have
selected the worksheet, Badboy will return you to the Data Source Properties page where you can select
other preferences for how data should be loaded. The diagram below shows the Properties page for
configuring a Data Source:

Badboy v2.1 User Documentation

 Page 28 of 128

Figure 5: Data Source Properties

9.4 Controlling the Format of Loaded Data

You can review how the loaded data will look by clicking the "Format..." button. This will cause Badboy to

load the data from your Data Source and show it to you. If the values do not appear in the format that you

want then you can choose from among some format options on this screen to change how they are

loaded.

Badboy v2.1 User Documentation

 Page 29 of 128

The diagram below shows an example of this:

Figure 6: Data Source Preferences

9.5 Playing Data Source Items

Data is loaded when a Data Source item is played as part of the script execution. Hence after defining
your data source you won't see any values loaded until you cause it to be played, for example, by right
clicking on the item and selecting 'Play'.

Note: prior versions of Badboy loaded data from data sources when Badboy was started. If you have
legacy scripts with data sources attached then they will still behave this way. New scripts, however,
should use the methods described in this section.

9.6 Using Data Source Values

Badboy will automatically read the next value from your data source each time a variable is incremented.
This could be as a result of an auto-increment (performed at the start of the script when a variable is
flagged for auto-increment) or as a result of an explicit increment placed in your script.

9.7 Looping Over Values in a Data Source

A very common scenario is to load values from a data source and then repeat a Step for each row of
values in the data source. Badboy makes this very easy to do by using the looping properties of Steps.
You can do this by taking the following actions:

¶ Add the data source to your script to load the data

¶ After the data source, add a new Step

¶ Put the actions that you want to occur for each row of the data set into the new Step

Badboy v2.1 User Documentation

 Page 30 of 128

¶ Play the data source once to load the variables

¶ Set the new Step to loop over one of the variables loaded by your data source

When you have finished, your Script would look something like the figure below:

9.8 Advanced Options

Badboy offers some advanced options that you can use to load data in more sophisticated ways. These
are:

¶ Using Custom SQL If you know how to write SQL that your Data Source understands then you
can make up your own SQL statement to load data from your data source. Badboy will try to
execute this statement against the Data Source and it will treat the returned columns and rows as
a table from which to load data. You should make sure that your SQL statement returns
appropriately named columns that Badboy can understand. By default, Badboy will convert the
columns names to variable names.

¶ Custom Variable Mapping By default Badboy tries to use the columns returned from your table (or
from your Custom SQL, if you have chosen that option) as variable names. If you want to change
how the columns get matched to variables, choose the "Custom" option in the lower portion of the
Data Source Properties dialog. This will show you a list of the variables you have defined to
choose from. You can then "check" the ones that you want Badboy to map data to from your data
source. When the Data Source item is played, Badboy will then load each checked variable, in
order, from the corresponding column from the Data Source. In this way you can map any column
from your Data Source to any variable that you have defined in Badboy.

10 Populating and Submitting Forms

HTML Forms are the core of many modern web applications. Form Populators help you populate and
submit forms as part of your Badboy scripts.

You often don't have to use Form Populators at all - Badboy automatically records and sends the data

from the Forms as Request parameters, so it typically isn't necessary to actually populate the form on the

page. There are some times, however, when certain visual or functional effects are explicitly linked to the

population of a form. Form Populators are here to help you when you need to test these kinds of pages.

Some examples are:

¶ A web site may perform scripted operations based on the content of Forms prior to submitting
them. For example, sometimes the content of one field may be dynamically calculated from
another field at the time the form is submitted by DHTML scripting. When Badboy operates in
Request mode it may bypass the calculation and send an incorrect value.

¶ A web site may send back many fields in a form pre-populated. In Request mode, Badboy
ignores the values that are pre-populated and instead sends a request containing all the values
that were recorded originally. Although it is possible to make Badboy extract the values from the
page and send them in the Request, it may be much easier to use a Form Populator to populate
only the fields you need and submit the form.

Badboy v2.1 User Documentation

 Page 31 of 128

¶ Many web sites take measures to prevent automated access which detect Badboy's Request
mode and prevent it working. This is especially common on important pages such as login pages
and order submission pages. Since Form Populators are a more realistic simulation of user
activity, they often provide a work around when normal Badboy Requests fail.

10.1 Creating a Form Populator Manually

A new Form Populator added to your script appears as shown below:

10.2 Adding fields to a Form Populator

Once a Form Populator has been created, you need to add the fields that you would like populated to it.
There are several ways to do this. The easiest is to let Badboy do the work by capturing the form
automatically. You can do this very simply in a couple of ways:

¶ Click in a field of the form you want to capture and hit "Ctrl-Alt-f" on your keyboard. This will
capture a Form Populator for the form where you clicked.

¶ Drag a Form Populator into your script, and click the "Capture" button in the Form Populators
Properties dialog.

The Figure below shows how the Form Populator properties dialog appears:

Figure 7: Form Populator Properties

In order to use the Capture button, you should first choose the form that you would like to populate from
by selecting either its index (i.e., the position of the form based on the order the forms appear on the

Badboy v2.1 User Documentation

 Page 32 of 128

screen), or its name. If you aren't sure which form to populate from then the easiest method is to simple
try capturing different indexes until the element you want appears. It is often useful to use the DOM View
to help select the correct form. When you have selected the form you would like to populate from, just hit
the Capture button and Badboy will capture form elements along with their current values from the form
that you selected.

10.3 Using Regular Expressions

Occasionally you may need to populate a form whose name is not the same each time it appears in the
page, but follows a fixed pattern. For example, in some applications the form may have a constant name
followed by a number that changes. For these cases you can enable the "Use Regex" option and enter a
Regular Expression that matches the pattern of the form you wish to populate. For example, if the form is
always called "logonForm" followed by a 4 digit number, you can use an expression like this:

logonForm[0 - 9]{4}

10.4 Automatic Capture of Form Populators

Sometimes Badboy may automatically record Form Populators for you. This occurs when you record a
Navigation (see Navigation Items) and you have modified some fields in a form on the page that you are
recording. In this case, Badboy detects the modified fields and creates a Form Populator for those fields
so that when you play back they fields will be populated correctly.

10.5 Playing Form Populators

Form Populators are easy to play - they behave the same way as other Badboy elements and can be
played either using the right-click menu or as part of the normal flow of your script. You should be aware
that if the form that you attempt to populate does not exist on the page, Badboy will generate a warning in
the log file, but will continue playing without error. If you want to be assured that the form populated
correctly, you may like to use an Assertion.

10.6 Form Values

Form Populators work by recording the values present in forms as "Form Values" that are children of the
Form Populator in the script. When a Form Populator is played, each of its child Form Values is populated
into the form. If you want to change which values are populated by a Form Populator, you can do that by
modifying the Form Values by editing their properties.

10.7 Indexed Form Values

As well as a name for the field, each Form Value has an "index". Indexed Form Values are used when
there are multiple elements in a form that have the same name or id. When this occurs, Badboy will
record a form value for each form field that has the same name and an index that specifies which
instance of the field having that name should be populated.

10.8 Select / Dropdown Boxes

Selection boxes present a minor complication in form population because each entry in the dropdown
menu is in fact represented by two different values that are both useful in populating them on playback:

¶ The value submitted by the field to the server - this is often a code or a number

¶ The value displayed to the user - this is usually human readable text

Badboy v2.1 User Documentation

 Page 33 of 128

By default Badboy records the first of these options - the value submitted to the server, and on playback it
selects the option in the select box that has that same submitted value. This often works well but in some
cases it may fail or be more difficult to use. For example, if the page uses arbitrary values for the options
that change each time the script is played back then playback will not work because the original recorded
value may be incorrect next time the script is played back, even though the text of the option values stays
the same. It may be also may easier to select the option based on the displayed value when you are
doing data driven testing such as loading the values from a spread sheet or other external source where
the codes are not externally known but the text values are.

For these cases where the human readable value is more appropriate, open the Form Value properties
and select the option "Match Visible Text for Select / Dropdown Fields". This will change playback to
select the option where the text displayed in the dropdown matches the script Form Value rather than the
code submitted to the server.

10.9 Sending JavaScript Events

By default Badboy populates fields in forms without any side effects. This means that the normal
JavaScript events that occur when a person types into the field do not get fired. In some cases it is
desirable to reproduce these events. For example: when the population of a field on the page triggers a
change in another part of the page that is then needed for subsequent actions in your test. You can
enable sending of these events by checking the box labeled 'Send DOM Events' in the properties for each
Form Value.

It is also sometimes the case that a particular effect may only be triggered while a field has the focus.
This can mean that even populating a field and sending the DOM Events does not enable the necessary
interactions desired on the page. A common example of this is an auto-complete style dropdown. If you
wish to test that correct values appear in the dropdown, these values may only appear if the field is
populated and also retains the focus. You can cause a field to be left with the focus if you select "Retain
Focus" on that field, and ensure that it is either the only field in a Form Populator with DOM Events
enabled or it is the last field populated.

10.10 Using Form Populators to Submit Forms

If you wish, Badboy can also submit the populated form after it has populated it. This allows you to use
Form Populators as an alternative to the usual Request and Navigation Mode playback mechanisms.
Used in this way, Form Populators can often assist to automate operations that experience problems
using other methods.

11 Using Templates

This section explains how Badboy allows you to structure your scripts using Templates.

11.1 The Need for Test Templates

It is very common to find that many of your tests share a similar pattern. For example, it's very normal for
all of your tests to have to first log in to your application and then log out afterwards. Sometimes there can
be quite complicated sequences of actions that are common to a whole class of tests. Test Templates are
designed to help you with this problem by letting you create the pattern for your test and save it, and then
reuse that pattern for all of your Tests that share the same sequence of actions.

If you simply want to reuse one item or a group of items in a Step then you can save the items as an
External Tool. The difference between External Tools and Test Templates is that Templates allow you to
reuse the structure of a Test as well as the items in it.

Badboy v2.1 User Documentation

 Page 34 of 128

11.2 Creating Test Templates

You create Test Templates by first creating a Test that matches the structure that you want Tests that use

the Template to have. For example, if you want to make Tests that log in, perform a specific action and

then log out, you might make a Template in the following form:

Notice that the Login and Logout Steps in the above example have items recorded in them, but the
"Execute Tests" Step is empty. This step is a place holder for where tests that extend your template will
place items. Once you have created a Test that matches the outline you want, right click on it and select
the "Save as Template" option.

Badboy will then let you choose a file name and allow you to save the template. The filename you choose
should end in the extension ".bxt" (this will be the default if you don't enter an extension).

By default Badboy saves templates in a directory called "Badboy Templates" created in your login user's
Documents and Settings folder. However if you want to you can also save the template in the same
directory as the script you are creating. This way it will always be easy to find the template file and you
can simply zip up the folder if you want to send it to someone else and be sure they get all the templates
needed by the script. Badboy will always check both these locations when looking for templates that are
referenced in your script.

After you have saved your template Badboy will offer to replace the Test with one that extends the
template. If you do this you will see the Test change: all the Steps that were previously in your Test will
have changed to a white. These Steps are known as "bind points" as they are "bound" to the template
and will execute what is in the template. The figure below shows how the Login Test looks after it has
been saved and converted:

Notice that the Template that has been extended is shown in angled brackets so that you know it is the
source for the Test's bound items. Also note that the Step that you left empty has been automatically
made the recording Step - Badboy automatically assumes that empty Steps are meant to be implemented
by Tests that extend the Template.

Badboy v2.1 User Documentation

 Page 35 of 128

11.3 Overriding Steps

It is common that you may find that some of your Tests that extend a Template need to alter one of the
Steps that the Template defines. This is known as "overriding" the Template Step because your own
Test's version of the Step will execute instead of the Template version. Overriding a Template Step is
easy to do - just right click on the Template Step that you want to override and select
"Override/Implement" and Badboy will change the Template Step to a normal Step and let you record
inside it.

12 Understanding Playback Results

When you play your script back Badboy records statistics about each page for you so that you can
monitor the progress and review what happened later on. Badboy makes it possible to quickly see this
information for any item in your script via the Summary View.

12.1 Summary View

The Summary View is the tabbed view that displays by default in the bottom left of your main Badboy
window. The figure below shows how it looks:

Figure 8: Summary View

The following table explains the numbers that are shown in the summary:

Statistic Description

Played The number of script items that played and returned a response

Succeeded The number of script items that played and returned a successful response

Failed The number of script items that played and returned an error response

Assertions The number of assertions that have failed. (see Assertions)

Warnings
The number of Warnings generated. Warnings are problems that occur while playing

which don't prevent playback but may indicate problems with your script or your web site.

For example, if a page experiences JavaScript errors, or if a Form Populator executes

Badboy v2.1 User Documentation

 Page 36 of 128

Statistic Description

but cannot find the specified form then warnings will be recorded as part of the response

for the item.

Timeouts The number of Timeouts that have occurred (see Timeouts)

Avg Time

(ms)
The average time in milliseconds for items that played and received a response..

Max Time

(ms)
The maximum time for any individual recorded response.

12.2 The Summary Hierarchy

Summaries are hierarchical - that is, each summary is actually a summary of its children. When you
select an item the Script Tree, Badboy displays the summary for that particular item in the Summary
View. If you expand the item in the Script Tree and select its children then you can view the breakdown of
that summary for each of its children.

12.3 Adding Information to Summary View

If you like you can add your own documentation or notes to the information displayed in the Summary
View. This can be a convenient way to explain what your script is doing. To do this, select the item in your
script with the mouse and press "Ctrl-Shift-d".

12.4 Generating Reports

If you want a summary of your whole script in one page, you can generate an HTML Report. This is easy

to do by selecting "View" and then "Report" from Badboy's menu. You can customize this report if you like

- see Generating Reports.

13 Timeouts and Error Handlers

As everyone who uses a browser knows, things frequently don't go how you expect. Web sites go down,
connections fail, systems and computers experience problems. You might be wondering, how can I make
my scripts run reliably in the face of all this unreliability? One way that you can manage the unreliable
world is by using Timeouts and Error Handlers.

¶ Timeouts ensure that items in your script do not take excessive amounts of time and ensure that
if things go wrong your script keeps running and returns a result to you.

¶ Error Handlers allow you to retry or abort items that fail automatically.

Timeouts and Error Handlers can be configured on any playable item, including requests, navigations,
and even Steps. If you configure a timeout for a Step the timeout will govern the whole Step so that the
sum of the times for all the items in the Step will be limited to the timeout period.

Badboy v2.1 User Documentation

 Page 37 of 128

13.1 Configuring a Timeout

To add a timeout, simply open the properties for the item on which you would like to configure the timeout
and choose the "Playing" tab:

Figure 9: Configure Timeout

Once a timeout is configured, Badboy will monitor the item as it plays and if the time you set is exceeded,
Badboy will execute the Continuation action you specified.

Notes and Limitations:

¶ Some items cannot be timed out during certain phases of their execution due to their nature. For
example, once the Save item has started writing data to the disk it will continue even if a timeout
occurs. When the save finishes the timeout will execute.

¶ Timeouts have a minimum resolution of 1 second. This means that the actual timeout may occur
at plus or minus one second from when you configure it to occur. For low timeouts this may be a
significant effect and thus it is not recommended to configure timeouts for less than 2 seconds.

13.2 Error Handlers

Errors include problems like server failures, HTTP protocol errors (for example, 404 Not Found), or
network failures. By default, when an error occurs, Badboy will simply note the error and continue playing
the next item in the script. You can change this behavior by configuring handling for errors on the Playing
tab of the item, or on a parent of the item such as the Step or Test that it resides in.

The figure below shows how the error handling section of the properties dialog appears:

Figure 10: Error Handling

Badboy v2.1 User Documentation

 Page 38 of 128

To make Badboy completely ignore an error, you can enter a regular expression pattern ("Regex") that
matches the URL for which the error occurs, or which matches the error message that is reported by
Badboy. You only need to match a portion of the error for the match to succeed.

To make Badboy ignore all errors on an item, enter the Regex pattern: .*

To configure other handling for errors, change the "Action on Error" drop down box to specify the action
you would like. For example, you can make Badboy abort the current Test if an error occurs, or repeat the
containing Step. A particularly useful option is "Retry this item". The Retry option removes the error
response and re-executes the item on which Retry is set one time before registering the error. For
example, you can set a Retry on a Step and if any item fails inside the Step then Badboy will clear the
error and try the Step again. If there is no error on the second try then the script will continue without
reporting any problem. However if the item fails again on the second execution then Badboy registers the
error. This can help you prevent transient or temporary problems from causing your tests to fail in
situations where Badboy is running on unreliable networks or is subject to other occasional problems.

13.3 Continuation after an Error or Timeout

When you configure handling for errors or timeouts, you have the option to control what action is taken
when the timeout occurs. These include:

Timeout Actions Description

Continue from same

position
Aborts the currently playing item and continues with the next item.

Abort this Step
Aborts the currently playing Step and continues with the item

following that Step in the script.

Abort Hierarchy

Aborts the whole hierarchy of Steps right to the top level. Continues

from the next item in the script following the top level Step

containing the item that timed out.

Stop Playing
Stops the play sequence altogether. Badboy will stop and wait for

manual intervention.

Repeat Containing Step

Rewinds back to the Step containing the item that timed out and

plays the Step again. Note that any loop counters will be reset so

that the Step will re-execute its looping behavior as well.

Retry this item

Discards any error response in the item and replays it one time only.

If playback fails a second time, record the error and continue

playing.

Badboy v2.1 User Documentation

 Page 39 of 128

14 Mouse Clicks

Browsers are intimately mouse driven tools, so it is not surprising that there are times when nothing other
than a real mouse click will replay exactly the effect you are looking for in a test. Some common examples
of situations when this can happen are:

¶ Your web site uses Java Applets

¶ Your web site relies on complicated JavaScript effects that are only activated via the mouse

¶ Popup boxes, JavaScript errors or security dialogs prevent your tests from playing properly.

In all these situations a simple and effective solution can be to control the browser by automating mouse
clicks in the window. Fortunately, Badboy makes recording and adding Mouse Clicks easy.

14.1 Adding a Mouse Click

To add a mouse click, just drag a Click Item from the Toolbox into your Script. The figure below shows
how a Click Item appears in the script:

When you add a Click Item, the properties dialog box for the Click Item will show giving a number of
options that you can choose to determine how the mouse click is performed. The following paragraphs
describe these. The figure below shows how this looks:

Figure 11: Click Properties

Badboy v2.1 User Documentation

 Page 40 of 128

14.2 Window Name, X and Y Position

These parameters determine the window and the location within the window (in pixels) where the mouse
click will occur. The mouse click is always relative to the top left corner of the window specified. This
means that you don't need to worry about where the window appears on the screen (which can easily
change), but only about where in that window the click needs to occur. Note that sometimes looks can be
deceiving - some applications use many layers of windows and consequently if you enter the numbers
manually you may have to experiment to get the right X and Y position. Sometimes you may even find
that the values you need are negative. The best way to set all these parameters at once is to use the
Capture Button (see below).

14.3 Capturing the Click from an Existing Window

By far the easiest way to create a Click Item is to capture it from an existing window on your screen. This
means that you should set up Badboy (and any other windows you expect to be on the screen and open
the Click Item properties and then click the Capture button. The next left click that you do will then be
captured, including window title, X and Y position. Note that you are not limited to recording clicks inside
Badboy's browser window - you can record clicks on any window on your desktop, even Badboy's menus
or the desktop itself!

Tip: Badboy offers a shortcut way to create Mouse Click Items: just click (anywhere) in a browser window
that you want the click to occur in, position the mouse at the right location and the hit keys "Ctrl-Alt-M".
Badboy will add a Mouse Click recorded at the selected location to your script tree.

14.4 Restoring Window Size

One problem with using mouse clicks is that sometimes if windows change their size and shape then they
may lay out their contents differently. This is especially true with HTML based views such as Badboy's.
For this situation you can check the "Attempt to Restore Window Size" box prior to capturing the click with
the "Capture" button. In this case the window size will be captured and then restored prior to executing
the Click operation. Note: although Badboy will always try to resize windows if you check this option some
windows may refuse to let Badboy resize them, preventing it from working. Fortunately, the most
important window - Badboy's own window - should always work.

14.5 Cascading Click Items

You might wonder, what do I do if I know that a window that I want to click on will appear, but I don't know
when? This situation appears more commonly than you might think. Most especially, it occurs when
unexpected dialog boxes show during your tests - (examples are JavaScript Alerts, confirmation boxes,
security warnings or JavaScript errors). To handle these it can be very useful to be able to say "If this kind
of window ever appears, click on it to make it go away". This is exactly what Badboy allows you to do with
Cascading Click Items. The term "Cascading" means that the Click will apply for all items following and
below the Click Item in the Script, but not outside of the Step in which the Click is positioned. When a
Cascading Click Item plays, it starts a background "watchdog" that continuously looks to see if a window
matching the name you have given is present. If it finds one, it executes the click. When the play position
moves outside of the Step in which the Click is positioned, the watchdog is terminated.

Note: if you want Badboy to click on a window, you must often place the Cascading Click Item before the
item that causes the popup to occur in the script. If you put it afterward it may not execute until after the
actual popup has been closed.

Badboy v2.1 User Documentation

 Page 41 of 128

14.6 A Common Problem: Capturing Modal Dialogs

Sometimes you may want to capture a click on a window that only shows up during playback and you
may find that you can't open the Click Properties dialog to capture the Click coordinates. A simple trick
will help you deal with this: run a second instance of Badboy to cause the window to show, then capture
the Click using the first instance. This trick works because Badboy can capture Clicks from the second
window, but will still happily play the Click back on windows generated by the first instance . Using this
trick you can capture a click for any kind of popup or dialog that may show.

14.7 Disadvantages of Mouse Clicks

You could potentially write your whole test using "Click" items. You might find this a very easy away to get
your tests working. However there are some disadvantages of creating test scripts this way that you
should seriously consider before basing significant portions of your tests on mouse clicks:

¶ Because Mouse Clicks are critically dependent on the exact layout of the page to work, they are
harder to maintain. A small change to the layout of the page, the size of the font or the width of a
table will throw the position of the Click completely off. This means that although your test will be
easy to create, as time goes by and your pages change it will begin to break. You will have to go
back and re-record the Click items when this happens. When your tests fail, you will have to
wonder if they really failed or if perhaps just one of the Mouse Clicks has stopped working.

¶ Mouse Clicks may depend on your browser's configuration to work. Different users may have
different fonts and other browser settings that may subtly affect the layout of the page. If you
record scripts with a lot of Mouse Clicks you will find it harder to share them with others because
of this.

¶ Mouse Clicks rely on having a real, true browser window present. This means that if you try to run
your scripts with bbcmd, the Badboy command line runner, you will find that they won't work.
They also won't get exported if you save your script in JMeter format. You will even find that you
can't minimize the Badboy window while the Click Item is playing.

For the reasons above over-use of Click Items is not encouraged. However using them carefully and
wisely will let you test things that might otherwise be impossible, and can make your testing life easier
when you are confronted with difficult problems

15 Assertions

Testing a web site can be a frustrating, tedious and monotonous task. Badboy helps you ease the task by
automating the playback of testing scripts, but you will still get sick of watching every screen to see if it
worked the way you expected. You might wonder, can't Badboy help with this too? This is where
Assertions come into play.

15.1 How Assertions Work

Assertions are a way that you can tell Badboy to perform automatic checks to make sure that your web
site is working as you expect. You can think of an Assertion as a "statement of truth" - something that you
say is true about your web site. If you make this statement, Badboy can make sure it is true and warn you
if it is not.

Assertions in Badboy are made up of two parts:

¶ The Assertion item itself - describes how checks are executed and what to do when they fail

¶ Checks - these are items that are added as children of the Assertion and examine different
aspects of the page or the script to determine if your Assertion passes or fails.

Badboy v2.1 User Documentation

 Page 42 of 128

15.2 Adding Assertions

You can add an Assertion anywhere in your script just by dragging one from the Toolbox. A new
Assertion added to your script appears as a question mark symbol as shown below:

The question mark indicates that the assertion has not been tested yet. When the assertion plays, it will
change to either a tick or a cross depending on whether the assertion was found to be true.

15.3 Checks

An Assertion by itself won't check anything and will always pass - you need to add Checks from the
Toolbox to it to describe which properties of the page to check. There are several different kinds of Check
items that Badboy supports. The table below shows some of the different types:

Name Icon Description

Content

Check

Checks for the presence of some text on the page.

Response

Check

Checks characteristics of the response time and size

Color

Check

Checks for particular colors on the page. You can specify a

range of colors and approximate location to allow for slight

variations.

Summary

Check

Checks the summary information for items in the script. For

example, it can check the number of times an item has

played, errored or timed out.

JScript

Check

Executes JScript that you provide and passes or fails the

assertion based on whether your JScript returns "true" or

"false".

Variable

Check

Checks the value of a variable to see if it matches a regular

expression that you provide.

Window

Caption

Check

Searches for a window with the caption you specify and

optionally look for a child window (such as a button, text

field, checkbox, etc.) with specified text. This check does

not match text on web content, only on native windows

(including, however Java applets embedded in web

content).

Badboy v2.1 User Documentation

 Page 43 of 128

15.4 Easy Assertions

The most common kind of Check is the Content Check, so Badboy provides an especially easy way to
add Assertions with Content Checks to your script. To use this function all you have to do is select with
the mouse the content you would like the Assertion to check and then click the "Easy Assertion" button
(shown below).

You can find more information about Content Checks in the topic Content Checks.

By default the Easy Assertion button adds a positive Assertion, i.e. an Assertion that states that the
content should exist on your page. If you want to add a negative Assertion, i.e. that the selected content
should not exist on the page, hold down the SHIFT key while clicking the button.

15.5 Assertion Properties

An Assertion has a number of properties that control how it works. Below is an example of the Assertion
Properties dialog showing the options that you can choose:

Figure 12: Assertion Properties

Badboy v2.1 User Documentation

 Page 44 of 128

15.6 Cascading Assertions

Cascading Assertions differ in that they have a longer lifetime than just the moment they are played.
When you check the "Cascade to following items" box Badboy will test the Assertion after every item is
played until the parent Step, Test or Suite of the Assertion is exited. Thus Cascading Assertions are
useful for detecting general error conditions. For example, you could specify that no page anywhere on
your site should ever contain the words "Internal Server Error". By adding this as a "Cascading" Assertion
at the top of your script you can ensure that Badboy will flag such an error no matter when or where this
text occurs.

The scope of a Cascading Assertion is limited to the Step, Test or Suite that is the direct parent of the
Assertion. This means that the Assertion flows "downward" into all the Steps that are children of the
Assertion's parent Step. Once the play position moves out of the Assertion's parent item the Assertion no
longer applies. If you would like your Assertion to apply across a whole Suite of Tests then you can put it
immediately under the Suite item in your script, so that it plays before any of the Tests execute and it
stays active for the whole Suite.

15.7 Violation Actions and Continuation

Very often an Assertion failure may represent a severe error in your web site or application. In such a

case you may not want your test to continue, but rather to abort either the whole script or the Step that is

playing. To achieve this, select the action you would like from the "Continuation" box in the Assertion

properties.

15.8 Capturing a Screenshot

Often just the fact that an Assertion failed won't be enough to describe in detail what the problem was that

occurred. For example, if you matched "Error 500" in your Assertion text, you would want to see what else

was on the screen at the time to tell what the problem really was. Badboy makes this easy by giving you

the option to automatically capture a Screen Shot of the browser window any time an Assertion fails. You

will then be able to view the Screen Shot at any later time by opening the captured image in your Script. It

will also be exported if you save an HTML Report of your Script's execution.

15.9 Waiting for Assertions to Pass

Sometimes the content that an assertion is checking for may be delayed in appearing on the page. In
general this should not be the case because Badboy should wait for pages to completely load before
checking them with Assertions. If, however, you have a special case where this is not sufficient (for
example, a page where some content is dynamically added after some time), you can check the box
marked "Wait up to ... seconds for Assertion to succeed" and enter an arbitrary amount of time that
Badboy should wait and watch for the Assertion to become true.

If the Assertion succeeds before the time expires then Badboy will continue playing immediately. If,
however, the time expires and the Assertion has still not succeeded then Badboy will fail the Assertion.

Badboy checks an Assertion periodically (several times per second) while waiting for it to succeed. Thus
the Assertion need only become true for a momentary amount of time for it to pass. If, however, it is only
true for a very small amount of time (smaller than about 200ms) then Badboy may not notice the
Assertion has passed and may keep waiting.

Badboy v2.1 User Documentation

 Page 45 of 128

16 Content Checks

Content Checks are a kind of Assertion Check that examines the content of the web page in the browser
to see if it contains particular text that you specify.

16.1 Content Check Properties

A Content Check has a number of properties that control how it works. Below is an example of the
Properties dialog showing the options that you can choose:

Figure 13: Content Check

In a simple case you will just type in some text that you want to test for and select either "Contain" or "Not
Contain" depending on whether the text is supposed to appear on the page or not. Some more complex
options are described below.

You can reference Badboy variables inside your expression using the standard ${variable name} syntax.

Badboy v2.1 User Documentation

 Page 46 of 128

16.2 Regular Expressions

Sometimes you can't say exactly what a page should look like but you can predict it's general form. In this
case you can use the "Regex Match" option in the Assertion properties to specify a Regular Expression
pattern to match the content that you want to trigger the Assertion. For example, you might want to check
that a person logged in successfully by looking for the login message with an Assertion such as
"Welcome [A-z0-9]*\. You have logged in successfully to account [0-9]*."

16.3 Matching Against Normalized Body Content

Badboy offers an advanced mode for matching content which can both make it easier to match and also

enable matching in situations where it may otherwise be impossible. When the Normalized Body Content

option is selected:

¶ HTML is extracted from the Body element of the HTML at the time the Assertion executes instead
of the time the page was loaded.

¶ The HTML is processed in several ways to ensure that it matches uniformly even if the page
content varies in certain ways. These include: all new lines are removed, all tags are made upper
case, and all attributes are ordered similarly

Using this option can help if you have Pages which write or modify their own HTML using a scripting

language (such as JavaScript). Note that this option can only match content inside the HTML's body

element on the page.

Badboy's Easy Assertion button always creates Assertions with Normalized Body Content enabled. You
should not disable this option if you create an Assertion with the Easy Assertion button unless you are
sure of what you are doing!

16.4 Common Problems

A common problem encountered when using Assertions is that the Assertion fails to trigger even though
the text it is supposed to find appears visually on the page. The key to understanding this problem is to
realize that the HTML source for a web page often contains special characters that do not appear visually
in the browser. For example, the words "tree frog" seen visually in the browser might actually be
represented as "tree frog" in the HTML source. Because Badboy tests the actual HTML source for
the page it may not find the words "tree frog" entered into an Assertion.

One way to avoid these problems is to just highlight the text on the page and use the Easy Assertion
button (described above). In this case Badboy will do the work to examine the source of the page and
format the content in such a way to ensure that it matches. If you don't want to use the Easy Assertion
method (for example, if you are writing a complex Assertion using regular expressions or Badboy
variables) then you should right click and use the "View Source..." option to show the HTML source for
the page that you are testing. Then you can search for the text you are trying to test and copy it exactly
from the HTML source into your Assertion expression to make sure it gets accurately matched.

17 Summary Checks

Summary Checks are a kind of Assertion Check that examines the summary information about an item in
your script such as the number of times it has played, succeeded or failed.

Badboy v2.1 User Documentation

 Page 47 of 128

17.1 Adding a Summary Check

To add a Summary Check, drag it from the Checks toolbox in the tabbed view and drop it into your script
at the position you would like it to execute.

When you drag a Summary Check from the Checks Toolbox, slightly different behavior occurs depending
on whether you drop it inside an existing Assertion. If you drop it inside an existing Assertion then Badboy
simply creates the Check in there. However if you drop it straight into the script then Badboy will
automatically create a new Assertion and put the Check inside it.

17.2 Summary Check Properties

A Summary Check has a number of properties that control how it works. Below is an example of the
Properties dialog showing the options that you can choose:

Figure 14: Summary Check Properties

The options you can choose are described below.

Badboy v2.1 User Documentation

 Page 48 of 128

17.3 Choosing Which Summary to Check

A Summary Check can only check the summary of one specific item in your script. There are two ways
you can identify which item it should check:

¶ By Location - This option determines an item to check by its relation to the position of the
Summary Check itself. For example if you want to verify that the current playing Step has not
experienced any timeouts, you can choose to check the Parent Step of the Check, and set
timeouts to zero in the Values section.

¶ By Id - If you wish you can simply put in an Id to check any item in your script. While this provides
a lot of flexibility, it is not usually recommended since you might later change the Id of or remove
the item it is referring to, in which case the Check will not play properly.

If you want to check the summaries for a group of items then you can place them in a Step and check the
summary of the Step.

17.4 Setting Values to Check

To set the values to check, just check the boxes in the Values list for each summary property that you
want to be examined, and then specify a maximum and minimum value for that property. If any property
falls outside the range you specify then the check will fail.

17.5 Combining Value Checks

By default the Summary Check requires that all of the values selected are in the specified ranges. In this
case the values are combined using and strategy. You can, however, choose an OR strategy in which
case any one of the values being in range will allow the Summary Check to pass.

18 JScript Checks

Sometimes you need to check your page in ways that may be more complicated than just looking for a
fixed piece of content. For example, it might be that the location in the page matters, or the style that it is
rendered in is important, or sometimes you may even wish to use sophisticated logic to check your page.
For example, you might decide that for all of your order forms, the quantity in the "Total" field should
always equal the sum of the quantities of the line items in the order. To make sophisticated checks like
this, the best way is to use a JScript Check. JScript checks allow you to use any JavaScript expression
that you can write to check the content of your page.

18.1 Adding a JScript Check

To add a JScript Check, drag it from the Checks toolbox in the tabbed view and drop it into your script at
the position you would like it to execute. You can drop it inside an existing Assertion to add the Check to
that Assertion, or you can drop it outside, in which case a new Assertion will be created.

Badboy v2.1 User Documentation

 Page 49 of 128

18.2 JScript Check Properties

A JScript Check has a number of properties that control how it works. Below is an example of the
Properties dialog showing the options that you can choose:

Figure 15: JScript Response Check Properties

18.3 Selecting the Frame to Use

Some websites may use frames to create separate windows within the page where content is rendered. If
that is the case and you want to check a specific frame, locate the correct frame and choose it in the drop
down list of frames.

If you have trouble identifying which is the correct frame, try locating the content using DOM View (Press
Ctrl-D) and then checking which frame is the parent of the element(s) you are looking for.

If you want to make an Assertion that checks all of the frames in the document then you can select the
"All" option. In that case, Badboy will execute the JavaScript in every frame of the document. This is very
useful for writing general rules that you think should always be true. For example, if your company policy
is that all pages must render in the Standards Compliant mode of the browser, you could write a rule that
checks that for every frame of the window by using the "All" option.

18.4 Writing JavaScript for JScript Checks

The JavaScript for JScript Checks is executed as if it was inside the body of a function. The script should
use the "return" keyword to return a value of either "true" or "false" to indicate whether the check passes
or not.

Badboy v2.1 User Documentation

 Page 50 of 128

Example 1

The following example checks that the Title of the window is not blank:

if(window.title != '') {
 return true; // passed
}
else{
 return false; // failed
}

Example 2

This example checks that IE is rendering in Standards Mode:

return window.document.compatMode == 'CSS1Compat';

19 Taking Screen Shots

When something goes wrong you often need a way to capture the problem so that you can show it to
your colleagues, development team or otherwise document the error. The simplest and fastest way to do
this is to take a screen shot of the browser window at the time the problem occurs. Badboy takes this
concept and extends it - giving you not only the ability to easily and simply capture screen shots but also
to scale them to your preferred resolution, and to capture them automatically when Assertions fail.

19.1 Capturing a Screen Shot Manually

You can easily capture a screen shot manually using either the Toolbar or Badboy's menus. To take a
full-size screen shot, just click the camera icon on the toolbar. The screen shot of the browser window will
be captured and placed on the clip-board so that you can paste it into another application - for example, a
Word document or your defect tracking tool.

You can also capture screen shots using the Tools menu, which lets you capture reduced size images at
50% and 25% size if you wish.

Badboy v2.1 User Documentation

 Page 51 of 128

19.2 Capturing a Screen Shot as part of your Script

If you like you can take screen shots at a predetermined point in your script by adding a Screen Shot item
directly. Adding a Screen Shot Item is easy: just drag it from the Toolbox to the place in your Script where
you would like it to go. The figure below shows how a Screen Shot item looks in your Script:

When you add a Screen Shot item the Screen Shot property dialog will open. Here you can add a label
that will be applied to your images when they are captured and you can specify the scaling you would like
to apply. It is often useful to reduce the size of captured images so that they take less space. Badboy
makes this easy by letting you specify the percentage size to which the image should be reduced. When
the Screen Shot item is played it will capture the browser window as an image which appears as an item
under the Screen Shot in the Script tree.

19.3 Capturing a Screen Shot Automatically when an Assertion Fails

Badboy can capture a Screen Shot automatically when an Assertion fails. Images captured this way will
appear underneath the Assertion in the tree where you can double click on them to view them or copy
them to the clipboard by right clicking and selecting 'Copy to Clipboard'.

To enable this feature, select the 'Capture screen shot on failure' in the properties for your Assertion.

19.4 Using Screen Shots for Manual Reviews

Sometimes there are cases where automated testing simply cannot replace the function of a real,
intelligent human viewing a page. Reviewing the quality of images, or the exact layout of items on a page,
the readability of fonts, or many other possible requirements are things that only a human can do.
However this does not mean you cannot use automation for such tests: only the review part requires a
human, not the processes that generate the pages to be reviewed. Therefore Badboy supports the idea of
flagging screen shots as requiring review. To do this, just check the box in the Screen Shot item
properties window called "Flag this Screen Shot for Review". When executing such a Screen Shot item,
Badboy takes the screen shot and notes that it needs manual review. Then when the script is finished
running, you can generate a Review Report containing all the items requiring review along with the notes
from the Documentation in a simple format that allows a human to quickly scan each screen shot and
validate that it satisfies the requirements. To view the Review Report, select it from the menu using View
=> Report => Review Report.

You can enter notes about what requires review in the normal Documentation section of the Screen Shot
item's properties window and these will be shown alongside the screen shots captured in the Review
Report

You can also send Review Reports by email using a Send Item from the Toolbox. This can make a very
convenient mechanism whereby you can run your Badboy tests off line and get a report of items requiring
review sent to you by email afterwards.

Badboy v2.1 User Documentation

 Page 52 of 128

19.5 Capturing Screen Shots of Response Time Graphs

Badboy can also capture a screen shot of the Graph that is normally displayed in the "Graph" tab next to
the Summary View. This is a useful way to capture a display of the response times of items in your test so
that you can compare them to previous instances.

Capturing the Response Time Graph is particularly useful if you want to include the graph in HTML
reports, as the captured graph will be exported along with other screen shots in the report. See
Generating Reports for more information about creating reports with Badboy.

Capturing screen shots of Response Time Graphs requires a valid license key to be entered under Help
=> Enter License Key

20 Creating Reports

After you have played your Badboy script you can review the results by looking at the Summary View and

browsing the script to look at items that have passed and failed. For some people this is perfectly

reasonable but for others it lacks some important features:

¶ The summary view isn't very detailed. It only shows 5 top level statistics for a particular item you
select in the script.

¶ You can only view the summary properly by running Badboy so you can't easily email it to other
people who might not have Badboy.

¶ It doesn't support integration with external programs or documents. Many people would like to
put the results from their Badboy tests, for example, into a word-processor document or spread
sheet.

Fortunately, Badboy offers some great features to generate reports for you which give you an unlimited

amount of detail about how your script played. This section describes how you can use Badboy to

generate such reports, both manually and also as part of your script execution.

20.1 HTML Reports

The easiest report to use is the HTML Report - you can easily see it any time just by clicking the "View"

menu and selecting "Report". When you do this, Badboy will save the an HTML version of your script

(including images from screen shots) to a temporary file and will show the report in the main Badboy

window. This simple report is easy to use and a great way to get a quick snapshot of your script.

If you want to save the HTML report to keep on your computer or send to someone else you can use the
File=>Save As menu:

Badboy v2.1 User Documentation

 Page 53 of 128

The figure below shows an example of how the HTML Report looks after you generate it:

Figure 16: HTML Report

When you save the HTML Report, Badboy saves the images that are used in the report in a sub-directory
that is named with the same name as the HTML file with "-images" appended. If you want to copy your
report to another location then you need to copy this folder with the images as well. To send to another
person, the most convenient way may be to "zip" the files using a Zip utility or a "Compressed Folder"
(Windows XP only).

Badboy v2.1 User Documentation

 Page 54 of 128

20.2 Saving an HTML Report as part of your Script

Often you want to run a test and have it automatically save a report for you so that you can review the
results later without having to remember to manually save the report. This is especially useful when
scripts run unsupervised as part of a batch process. You can do this in Badboy by using the Save Item
from the toolbox. Just drop a Save Item into your script at the place where you would like it to execute.
The Save Item Properties dialog will show (see image below). You should then select the "Script" radio
button and choose "HTML Report" from the adjacent drop down menu.

Figure 17: Save Item Properties

If you would like Badboy to display the report in the browser window as part of playing the script, check
the "Show Saved File in Browser after Saving" option in the properties dialog box.

20.3 Including Screen Shots in your Report

Badboy automatically includes any screen shots that were captured as part of your script in the saved
reports, including those that may have been automatically captured by Assertions. Additionally, if you
configure screen shots of Response Time graphs then your report will display graphs of response times
for the configured items as well (see Taking Screen Shots for more information).

Badboy v2.1 User Documentation

 Page 55 of 128

20.4 Exporting Raw XML

Many tools can read and write XML files to import and export data. If you such tools then you can use

them with Badboy by saving the script as XML. To do this, follow the same steps as above for the HTML

Report, but choose either "Badboy XML" or "Badboy Script (XML)" instead of "HTML Report" in the menu

and/or properties dialog option. Saving as XML can also be a very convenient way to integrate your

scripts with other automated processes as the XML is a human-readable format - allowing you to easily

write scripts that perform tasks based on the output of Badboy.

Note that Badboy supports two different XML formats - the "Badboy Script (XML)" format is now the
preferred format and should be used unless you have a particular reason to use the old format. See the
File Formats section for more information.

20.5 Generating Custom Reports

With some simple XML knowledge the Save Item allows you to generate customized reports containing

exactly the details that you want or even in a completely arbitrary format that you design. This is

achieved by specifying an XSL Style sheet for Badboy to use to format the saved file. XSL Style sheets

are a highly popular and standard way of formatting XML documents. They use a file called a "Style

sheet" to describe what should appear in the output document based on the input document (in this case

the input document is Badboy's XML file format). You can find many sources of information on how to

write XSL on the internet.

Since Badboy itself uses XML Style sheets to perform it's file export functions, the best way to start

learning about them is to look in your Badboy install directory for a directory called "xsl". In here you can

see all the style sheets that Badboy uses to perform functions such as producing the HTML Report,

exporting JMeter files and rendering the Summary View in the Badboy window. If you wish, you can even

modify these default style sheets to reflect your own preferences.

Note: if you modify the default style sheets, please remember that re-installing or upgrading Badboy may

overwrite these style sheets and you may lose your work. It is strongly suggested to keep a backup so

that you can restore them if this happens!

To apply a style sheet of your own, use the Save item and choose the "Script" radio button and then

"Badboy XML" as the output format in the properties dialog. Then you will see that the "Style sheet" box

becomes enabled and you can choose the style sheet file for Badboy to apply. If the box is blank Badboy

will not apply any style sheet and will instead export raw Badboy XML.

Badboy used to save reports using BadboyXML by default. However in version 2.0 a new XML Format
was introduced and the HTML report is now generated by default from this new format. If you still wish to
use the old format, you can select Badboy XML in the Save Item dropdown instead of "Badboy Script
(XML)" and then the old Badboy XML format will be generated and you can use a style sheet with that, if
you wish.

21 Handling Popup Message Boxes

Popup Message Boxes are small dialog boxes that are launched (usually) from scripts in web pages.
They display a simple message and sometimes offer buttons that allow the user to select a simple choice
such as OK or Cancel. Badboy refers to this kind of window as a "Message Box".

Badboy v2.1 User Documentation

 Page 56 of 128

21.1 Recording Message Boxes

If you are recording when a Message Box shows, Badboy will record a Message Box Item in your Script
containing the details of the message that appeared and the user response. The figure below shows how
this appears in your script:

21.2 Message Box Playback

Unlike most items in Badboy Scripts, Message Box Items don't cause Badboy to do anything immediately
when they play. You might be surprised by this and think that the Message Box Item should show the
Message Box itself. The reason it does not is that the appearance of the Message Box is usually a
response to other items in your script - for example Requests, Mouse Clicks, Form Populators, JScript, or
other items. Thus you do not need Message Box items to show Message Boxes - they will happen
anyway.

What Message Box Items actually do when they play is to wait in the background for a Message Box to
appear and then provide the response to it for you when that happens. This means that you don't have to
push "Ok" or "Cancel" - Badboy does it for you according to how you have configured the Message Box
Item. The script below shows an example of how a script might be constructed to respond to a Message
Box using a Message Box Item:

After a Message Box Item has played, if a Message Box appears that matches it's message text you will
see a slightly different kind of Message Box to usual. The figure below shows how this looks:

Figure 18: Message Box

Badboy v2.1 User Documentation

 Page 57 of 128

The modified Message Box that appears shows in the title bar the response that Badboy is going to
supply and also the time remaining before the response will be provided in seconds. This enables you to
watch and if you like, provide your own response manually - or otherwise let the Message Box time out
and have Badboy provide the response.

Because Message Box Items instruct Badboy about how to respond to messages they must play prior to
the item in your script that causes the message to appear. In some situations Badboy might record the
Message Box Item after the item that makes the Message Box appear; in this case, just drag the
Message Box Item up in the script so that it executes earlier until it executes before the Message Box
appears.

21.3 Viewing Message Boxes in Responses

Badboy also records the appearance of Message Boxes as part of Responses in your script. Thus if you
want to see whether a Message Box appeared or the response that was provided you can look at the
responses for the item in your script that caused the message to show. The figure below shows a
Message Box Item recorded as part of a Response.

21.4 Using Assertions with Message Boxes

If you want to check that a particular Message Box appears or ensure that it does not appear when your
script is playing, you can use Assertions to do this. To make an Assertion operate on Message Boxes,
enable the "Check against Message Boxes" option in the Assertion properties.

Badboy v2.1 User Documentation

 Page 58 of 128

Badboy keeps track of all the Message Boxes that appear for a page and records their messages along
with the page content. Thus when an Assertion plays, it checks the messages that have appeared on the
page similarly to how it checks the content on the page. If the browser moves to a new page, however,
Badboy will clear the messages accumulated and begin a fresh list of messages. Consequently,
Assertions that you create must play against the same page that the Message Box you want to test
appears on.

22 Handling File Downloads

File downloads occur when a user clicks on a link or button on a web site that sends back a file to be
saved or opened on the user's computer. When this happens, the browser usually prompts the user as to
whether they would like to Open, Save or Cancel, and if they wish to save the file, where they would like
to save it. These prompts can interrupt your tests and prevent them from playing back smoothly, so
Badboy provides you with tools to help in handling them.

While recording, Badboy does not create handlers for File Downloads. When a file is downloaded,
Badboy just records the Navigation or Request that causes the file to be sent back as it would for any
other page navigation. As a result, on playback you may find that the script stops and is waiting with a
prompt open. To deal with this, a tool is provided in the Toolbox that lets you to easily add file download
handling to these items so that Badboy automatically handles the prompts for you in the way you desire.

22.1 Adding File Download Handlers

You can add a Download Handler to any playable item in your script simply by dragging it from the
Toolbox into your script, and dropping it so that it becomes a child of the item that you want it to handle
downloads for. The figure below shows how it should appear in your script when correctly positioned:

Badboy v2.1 User Documentation

 Page 59 of 128

Note that the Download Handler must be a child of the item in the script that you want it to handle
downloads for. The script tree will not let you drop a Download Handler except as a child of a playable
item.

If the item you drop it into does not initiate a download on playback then no error or warning will be
recorded. The download handler will simply have no effect.

22.2 Configuration

A number of possible actions can be configured to occur when a download is handled by a Download
Handler. The figure below shows how the dialog for configuration looks:

Figure 19: Download Handler

As shown in the diagram above, you can choose two kinds of response:

¶ Download the file - You can provide an explicit location to save it, or you can leave it blank and
let Badboy automatically choose a location for you. By default Badboy will save it in the same
directory as your script, under a file name indicated by the URL for the download. If you want, you
can specify a folder here and Badboy will use that directory, but automatically decide the file
name, or, you can specify the complete file name you would like and Badboy will save it there.

Badboy v2.1 User Documentation

 Page 60 of 128

¶ Cancel - Ignore the download. Badboy will not transfer the content at all. You should still receive
an error if the content does not exist or a server error occurs in providing it, however you will not
test the full download process.

Unlike in the normal IE Save dialog, you do not have the option under Response to open the content
instead of downloading it. If you want to open it, you must download it and then configure one of the
"Open" options under "Handling" as described below.

If you choose to download the file, you can then choose one of the options for handling the file after it has
been downloaded, as follows:

¶ None - do nothing at all. The file is saved and left in the folder.

¶ Open Externally - Open the file outside of Badboy using the default program configured on your
computer for opening such files.

¶ Open Internally - Badboy will construct a file type URL to point to the file it has downloaded and
browse the internal browser to that location. For file types that support embedded display inside
the browser this will result in the files displaying inside the Badboy window itself. You should not
use this option for file types that do not support embedded display.

There is no automatic error if the program fails to start or cannot open the file. You would need to
configure a check (such as a Window Caption Check to verify the content after it has opened.) or other
means to validate that it loaded correctly.

23 Slowing Down Playback with Timers

Sometimes for various reasons you may want your script to play more slowly than Badboy does it by
default. Some situations where this is useful include:

¶ You want to simulate a realistic time between user actions ("think time"). This is particularly useful
when using Threads to test your web site or application under load.

¶ Badboy plays an item in the script before the web page is ready. Badboy tries to wait
automatically for the page to be ready before moving to play the next item in your script.
Sometimes, however, the page may still be busy doing activity that Badboy can't detect, and you
might want to make the script wait until the page is really ready.

In Badboy the way to do this is to use Timers. This section describes how to use Timers in Badboy.

23.1 Adding Timers

To add a Timer, just drag the Timer Tool from the Toolbox to the place in your script where you want
Badboy to pause.

If you can't find the Toolbox tab, just press Ctrl-T to display it.

Once you drop a Timer item into your script, the Timer Properties dialog will show so that you can set the
Timer's options

Badboy v2.1 User Documentation

 Page 61 of 128

23.2 Waiting for Fixed Time

The simplest use of Timers is just to wait for a predetermined time to expire. To do this, just select the
"Fixed" option in the properties dialog and enter the amount of time in the "Time to Pause" box in
milliseconds.

23.3 Waiting for a Random Time

Sometimes it is useful to be able to wait for a random time. This is especially the case when you have
multiple threads running and you would like to simulate realistic "random" pauses when browsing.

To use random times, just select the "Random" option in the properties dialog and the minimum and
maximum amount of time to wait in milliseconds into the provided fields. Each time the Timer plays it will
select a random time to wait within the range you specified.

You can use variable references in the time fields to make Badboy wait for a time that is the value of a
variable. To do this, enter the variable in the form "${variable name}".

23.4 Using Checks with Timers

Timers can do more than just wait for a fixed time to expire. They can wait for conditions about the page
to become true by using Checks. To add a Check to a Timer, just drag it from the Checks tab (usually,
this is next to the Tools tab), and drop it onto the Timer item. The properties dialog for the Check will
show so that you can set its attributes.

When a Timer has Checks added beneath it, it will wait for all the Checks to become true before it
continues, and the time set in the "Time to Pause" box has expired.

If a Check that you have added never becomes true, Badboy will pause forever at the Timer item waiting
for it. To avoid this you can set a Timeout on the Timer or the Step that contains it to take appropriate
action if this happens.

23.5 Cascading Timers

If you want to make Badboy pause after every item in your script then adding Timers after each item will
get very tiresome. To avoid this, you can select the option "Cascade delay to following items". When used
in this mode, a Timer is called a Cascading Timer.

A Cascading Timer will pause not just when it is played itself, but also after every item that follows it or is
beneath it in the script. This means that you can simply add a Cascading Timer at the start of a Step to
make all the items in that Step pause for a fixed amount of time.

Badboy v2.1 User Documentation

 Page 62 of 128

Badboy uses high performance counters built into most computers to measure time for Timers. On some
platforms or hardware configurations, these timers may not be supported. If you find Timers are not
waiting for the correct amount of time, or if you find that response times recorded by Badboy seem to be
inaccurate by an order of magnitude or more, set the environment variable
BADBOY_USE_TICKCOUNT_TIMER on your computer. This will cause Badboy to fall back to less
accurate but more commonly available timers.

24 Keyboard Input

Sometimes you may want to simulate key strokes as input to one of your web pages or another window.
This might be just to enter some simple text, or it might be to control the application in some way (using
the control keys or arrow keys, for example.) Badboy makes it easy to do this using the "Keys" Item.

24.1 Adding a Keys Item

Adding a Keys Item is easy: just drag it from the Toolbox to the place in your Script where you would like
it to go. The figure below shows how a Keys item looks in your Script:

When you add a Keys Item, the Keys property dialog will open. Here you can type the text for key strokes
you would like to be sent and configure other options for how and when the key strokes should be
simulated.

Figure 20: Keys Property

Badboy v2.1 User Documentation

 Page 63 of 128

24.2 Window Focus

When the Keys item is played, Badboy will send key strokes matching the text you have entered to
whichever window has the focus. In order to ensure your key strokes go to the right window, you will want
to ensure somehow that the window you intend has the focus when the Keys item is played. One simple
way to do this is to use a Mouse Click item which clicks in the target window prior to the Keys item
executing.

24.3 Handling Modal Windows

Sometimes the window that you want to send key strokes to is a modal window that blocks Badboy from
playing or any other window from taking focus. When these are invoked or created by actions in the
Badboy script it is possible that by the time the required window has become visible the Badboy script is
paused and cannot continue on to play your Keys Item. To deal with this problem you can configure your
Keys Item to play before the item that causes the dialog to show, but to run "in the background". This
means that when the Keys Item plays it doesn't send the key strokes immediately - instead, it allows the
Badboy script to keep playing and then sends them later on once the required window is visible. You can
set the criteria for when the key strokes will be sent in the options pane at the bottom of the Keys item
configuration dialog (see above). Note: for this process to work you must place the Keys Item in the script
prior to the item that shows the modal dialog that you want to send key strokes to. The diagram below
shows how this might look:

24.4 Sending Special Characters

If you want to send non-textual keys (for example, Ctrl keys, function keys or the Enter key), you can do
this using Virtual Key Codes. Virtual Key Codes are special names for keys which describe the keys. You
can include a Virtual Key Code in your Keys item by entering the Virtual Key Code surrounded by curly
braces. For example, to send the 'HOME' key on your keyboard you could enter '{VK_HOME}'. You can
embed this in text, if you like, for example: 'Tree frogs {VK_HOME} are green'.

The table at the end of this section shows the virtual keys supported by Badboy.

24.5 Key Combinations

Sometimes you may want to send a combination of keys all pressed together. For example, you might
want to send the "Alt" key plus the "F4" key to simulate closing an application. For such a case you need
to send the F4 key in-between the "down" and the "up" action for the "Alt" key. You can do this by adding
the modifiers ":UP" and ":DOWN" to the virtual keys in the table above.

For, example, to send "Alt-F4", you could use:

 {VK_MENU:DOWN}{VK_F4}{VK_MENU:UP}

This would cause whichever window had the focus to attempt to close. Note that the Alt key corresponds
to the VK_MENU virtual keycode.

Badboy v2.1 User Documentation

 Page 64 of 128

24.6 Virtual Key Table

Virtual Key Codes

VK_ACCEPT VK_F19 VK_NUMPAD9

VK_ADD VK_F20 VK_OEM_1

VK_APPS VK_F21 VK_OEM_2

VK_ATTN VK_F22 VK_OEM_3

VK_BACK VK_F23 VK_OEM_4

VK_BROWSER_BACK VK_F24 VK_OEM_5

VK_BROWSER_FAVORITES VK_HANGUEL VK_OEM_6

VK_BROWSER_FORWARD VK_HANGUL VK_OEM_7

VK_BROWSER_HOME VK_HELP VK_OEM_8

VK_BROWSER_REFRESH VK_HOME VK_OEM_102

VK_BROWSER_SEARCH VK_KANA VK_OEM_CLEAR

VK_BROWSER_STOP VK_LAUNCH_APP1 VK_OEM_COMMA

VK_CANCEL VK_LAUNCH_APP2 VK_OEM_MINUS

VK_CAPITAL VK_LAUNCH_MAIL VK_OEM_PERIOD

VK_CLEAR VK_LAUNCH_MEDIA_SELECT VK_OEM_PLUS

VK_CONTROL VK_LBUTTON VK_PA1

VK_CRSEL VK_LCONTROL VK_PACKET

VK_DECIMAL VK_LEFT VK_PAUSE

VK_DELETE VK_LMENU VK_PLAY

VK_DIVIDE VK_LSHIFT VK_PRIOR

VK_END VK_LWIN VK_PROCESSKEY

VK_EREOF VK_MBUTTON VK_RBUTTON

VK_EXSEL VK_MEDIA_NEXT_TRACK VK_RCONTROL

VK_F1 VK_MEDIA_PLAY_PAUSE VK_RETURN

Badboy v2.1 User Documentation

 Page 65 of 128

Virtual Key Codes

VK_F2 VK_MEDIA_PREV_TRACK VK_RMENU

VK_F3 VK_MEDIA_STOP VK_RSHIFT

VK_F4 VK_MENU VK_RWIN

VK_F5 VK_MODECHANGE VK_SCROLL

VK_F6 VK_MULTIPLY VK_SEPARATOR

VK_F7 VK_NEXT VK_SHIFT

VK_F8 VK_NONAME VK_SLEEP

VK_F9 VK_NUMLOCK VK_SPACE

VK_F10 VK_NUMPAD0 VK_SUBTRACT

VK_F11 VK_NUMPAD1 VK_TAB

VK_F12 VK_NUMPAD2 VK_UP

VK_F13 VK_NUMPAD3 VK_VOLUME_DOWN

VK_F14 VK_NUMPAD4 VK_VOLUME_MUTE

VK_F15 VK_NUMPAD5 VK_VOLUME_UP

VK_F16 VK_NUMPAD6 VK_XBUTTON1

VK_F17 VK_NUMPAD7 VK_XBUTTON2

VK_F18 VK_NUMPAD8 VK_ZOOM

25 Spidering

Exhaustively testing every function and feature on a web page can be hard and tedious work. While it's
easy to try the obvious things, testing every link and button on a page can involve hundreds of clicks -
and even then, how do you know you didn't miss one? If the links or buttons on your page change
frequently then you are even worse off - you might record a script but you would quickly find your script
was testing the wrong links!

Spidering is a feature to help you efficiently try every navigation that is possible on a page with just the
click of a button. Using spidering you can quickly find any broken links or other actions that cause
problems - without ever having to record them!

25.1 How Spidering Works

The term "Spidering" comes from the idea of a spider crawling across the links in its web. In Badboy, you
initiate Spidering by dropping a Spider item from the Toolbox into your Script. When the Spider item

Badboy v2.1 User Documentation

 Page 66 of 128

plays, it first surveys all the links and buttons it can find on the page and makes a list of them. From then
on, each time the Spider plays it executes one item from its list.

The figure below shows how a typical Spider item might appear in your Script:

25.2 Spider Looping

Since a Spider item only executes one item from your page each time it plays, in order to execute all the
links on a page it needs to execute in a loop. You accomplish this by placing the Spider item in a Step.
You don't need to configure looping for the Step - the Spider item will automatically loop for you after each
spidered link or button is navigated.

If you like you can disable automatic looping and control it yourself by adjusting the Spider's properties.

Each time the Spider plays, it follows the following process:

¶ First, it executes the next of the navigations on your page from its list

¶ After the navigation has executed, if there are more navigations to try, it will loop back to the first
item in its parent Step.

¶ If the Spider has exhausted all the links and buttons on the page it will exit and Badboy will
continue playing the items after the Spider in your script.

In this way the Spider item will loop inside it's Step until it has browsed all the links on a page.

25.3 Navigation Options

Sometimes you may not always want to execute every navigable element on your page. Badboy offers
you the ability to control what content is Spidered in several ways:

¶ You can choose what to include: Links, Buttons or both

¶ Mode - This is an advanced option that lets you choose whether to browse links by name
(Navigation Mode) or to browse them by their URLs (Request Mode). For highly dynamic links
browsing as Navigations is usually better, but for pages where many links have the same name,
Request mode may be necessary.

¶ Which browser frames to include - you can choose a specific frame or you can just let Badboy
browse all of them

¶ Specific exclusions - you can provide a list of regular expressions which will filter out content that
should not be browsed. For example, if you don't want Badboy to browse the "logout" link then
you might enter "logout" here.

25.4 Setting Assertions

You may like to configure Assertions for your Spider item so that you can check as each page is Spidered
that your web site is working correctly. To add Assertions, place them before the Spider item in the script
and configure them as cascading Assertions. By making them cascading Assertions you ensure that they
will execute each time an item is Spidered. The figure below shows how an example of how you might
configure a cascading Assertion for a Spider item in your script.

Badboy v2.1 User Documentation

 Page 67 of 128

25.5 Populating Forms

If your pages contain Forms then you may wish to ensure that they get populated with data so that
Badboy can spider them correctly. To do this, just add Form Populators for any forms on the page prior to
your Spider item. The figure below shows how this would appear:

25.6 Performing Actions on Spidered Pages

Badboy will automatically check for errors on the pages visited by the spider, and you can also add
cascading Assertions to check conditions as described above. Sometimes, however, you might want to
do more actions on each spidered page: execute JavaScript, conditional logic, populate variables or other
actions. To do this you can add children to the Spider Item itself: the spider will execute its child items for
every page that it visits. The figure below shows how this looks in your script:

25.7 Random Walking

By default the Spider Item creates a plan that it uses to make sure it tries every link on your page when it
executes. This makes sure that the each navigation is covered in an orderly manner. If you like, however,
you can tell the Spider item to just pick a navigation (link, or button) to perform at random. In this case no
plan is created and each time the Spider just randomly picks a link or button on the current page to
navigate. Note that if you use the "loop automatically" option in combination with Random Walking,
Badboy may loop forever because in Random Walk mode Badboy does not remember which links it has
already traveled and may execute the same links over and over again. It will only finish in that case when
it comes to a page where it cannot find any navigation to perform!

Badboy v2.1 User Documentation

 Page 68 of 128

25.8 Controlling Looping Yourself

In some situations you may prefer not to have Badboy jump to the previous step immediately after
executing a Spider. For example, you might like to perform some other operations - Mouse Clicks,
Variable Setters etc. In this case, just uncheck the "Loop Automatically" box in the Spider Item properties.
This will cause the Spider to execute and then carry on with subsequent items in your script without
looping. You can control looping yourself by setting a loop on the Step or using other features that change
the script flow (for example, using Badboy's OLE seek() method).

25.9 Detecting Errors

If there are errors during Spidering (for example, due to broken links on your page), usually you will want
to locate them and fix them. Badboy records the errors by adding them as red Responses under the
Spider item. If you expand such responses then you can see detailed information about the actual
navigation that caused the problem. You will also see an item created for you by Badboy which
reproduces the problem. To reproduce the failure you can play this item manually, or copy or move it
elsewhere to play it as part of your Script execution. The figure below shows how errors are captured
during spidering:

25.10 Recursive Spidering

A Spider in its default configuration will test all the links and buttons on a single page. However it will not
descend into the links and buttons on the child pages that are visited to test those. When a spider
descends more than one level into a website it is known as "recursive spidering".

Badboy does not support infinite depth recursion, however if you want to spider multiple levels you can do
that by adding a Spider Item as a child of another Spider Item. In this configuration Badboy will Spider
each link on the top level page and then for each visited page it will spider each link or button found.
When errors are found, instead of a single error being reported, Badboy will record all the navigations or
requests that preceded the problem from the starting page (so, for example, if you have 2 levels of
spiders, you will see 2 navigations recorded when a problem occurs). The diagram below shows how a 2
level recursive spider with some errors appears in a script:

Badboy v2.1 User Documentation

 Page 69 of 128

It is important to understand that when a Spider is recursive it may end up back on a page it has
previously visited. For example, if you start at the Home Page and then every child page from the Home
Page has a link back to the home page then a recursive Spider may well find itself back on the Home
Page again, and if it descends further it will end up re-testing the whole Home Page. This may not be a
problem, but it will waste a lot of time. To help avoid this, you can configure Spider Items to keep track of
which links have been visited and not revisit ones that have already been navigated. To do this, check the
box in the Spider Item labeled "Filter Duplicates", as shown below:

The "Filter Duplicates" option will stop a Spider from revisiting the same URL multiple times. It will not
stop the spider from navigating a link or button with the same name multiple times, if that link actually
points to a different URL. When a Spider is a child of another Spider in the script it will check its parent
Spiders and filter duplicate links that its parents have visited as well as links it has already visited itself.

Although the "Filter Duplicates" option will try and stop your Spider from going in circles, it is not perfect -
it cannot prevent the Spider from looping in cases where the URL to be navigated to is not clear from the
element on the page, for example if a link is responded to dynamically using JavaScript, or is redirected
or if the loop occurs as a result of a button rather than a link. Hence you may still find it beneficial to add
some Exclusions to prevent this happening for cases that you discover.

26 Sending Email

If you would like to be notified about the results of your tests, or if you would like to be able to send emails
based on information created or extracted from your website, Badboy makes this easy with the Send
Email item.

Sending Emails is restricted in the free version of Badboy to emails of less than 50 characters. In order to
send larger emails you need to purchase a license and enter your registration key using the "Enter
License Key" option under Badboy's Help menu.

26.1 Creating Send Email Items

To create an item to send email in your script, just open the Toolbox and drag a "Send Email" item into
your script at the point where you would like the email to be sent. The figure below shows how this looks:

Badboy v2.1 User Documentation

 Page 70 of 128

26.2 Setting the Email Content

To set the content of the mail as well as the subject and recipients, open the Email Item properties by
double clicking on it in your script. The figure below shows how this looks:

Figure 21: Email Item Properties

The Send Email item is actually the same as the Save item, but it is configured to send content as an
email instead of saving it to a file. You can change any Save Item to a Send Item at any time just by
changing the option from "File" to "Email" in the properties dialog.

Note that you can choose several different kinds of content:

¶ To send a plain text message, select the "Expression" option in the properties and type your
email into the field next to it.

¶ To send the current page showing in the browser page by email, select the "Browser Content"
option.

¶ To send an HTML report of how your script played, select the "Script" option and then choose
"HTML Report" in the drop down menu next to it. Badboy will send a beautifully formatted HTML
summary of your script including all failures, assertions and screen shots as well!

Badboy v2.1 User Documentation

 Page 71 of 128

26.3 Configuring your Email Settings

In order to send emails from your computer, Badboy must be configured with an SMTP server that it can
use. To do this, open the preferences from the Preferences menu and choose the "Programs" tab, and
then enter the details for your SMTP server. You should also enter a display name (this is the name that
the recipient of the Email will see the email as being "From"), and a "From" address. Please note that if
ñFromò address is not a real address belonging to the same domain as your network or your computer
then your mail server may refuse to send the email.

If you do not know the address of your SMTP Server, ask your ISP or Network Administrator and they
should be able to tell you.

26.4 Sending an Email from a File

A common need is to send an email that has its content loaded from a file. This is easy to do by using a
Variable Setters. First, add a Variable Setter and choose the "Load from File" option so that it loads it's
content from a file. Then, add your "Send Email" item and choose the Expression option and set it to be
the content of the variable.

The figure below shows how this might look:

27 Using JavaScript/JScript

27.1 Using JScript

Badboy can execute JavaScript (or JScript) against the visible Browser window as part of your tests. This
can be a very useful technique in some cases where you need to do advanced operations or where other
mechanisms for playing back aren't sufficient to automate your web site correctly.

Badboy v2.1 User Documentation

 Page 72 of 128

27.2 Adding JScript Items to your Script

You can add JScript to your tests by right-clicking in the Script tree on a Step or Request and selecting
Add-> JScript or Insert->JScript.

You can also add JScript items to your script by dragging them from the Toolbox (press Ctrl-T to show the
Toolbox) and dropping them into your script at the point where you would like the JavaScript to be
executed

27.3 Editing JScript Properties

When adding a JScript item or if you edit it's properties, you will be shown a dialog where you can enter
the JScript for Badboy to run when it plays the given item:

Figure 22: JScript Edit Properties

Badboy v2.1 User Documentation

 Page 73 of 128

Badboy supports auto-completion for properties and functions in the Browser window. Press Ctrl-Space
to see the available properties displayed when you are creating your JavaScript.

You can also choose the frame that the JavaScript should run in. If your web site has only one frame or
you want the script to run in the top frame then you can just leave this box empty. If, however, there are
child frames in the page then it can be convenient and occasionally essential to comply with browser
security constraints to run the script in the context of the correct frame.

27.4 Plugin Privileges

Badboy offers additional features and functions to Badboy Plugins. However you don't need to write a
plugin to access these special functions: you can make it possible by checking the box marked "Allow
Access to Plugin Privileges". If you do this then your script can access the plugin API by creating a
"plugin" object as follows:

Example 1 - Read Badboy Preferences:

 var p lugin = badboy.plugin();

 alert("Badboy is configured to use " + plugin.getPreference("Undo Levels")

+ " undo levels");

It is important to be mindful of security: Badboy's plugin API can be used to modify your script and could
even be manipulated to launch malicious programs on your computer. Therefore you should make sure
you do not set references to the "plugin" object outside of your script in case they might be accessed by
web pages you do not trust.

28 Advanced JScript

JScript can be used to perform advanced operations and thereby extend the functionality of Badboy. Here
is an example JScript that will let you save a file to your local hard disk when it executes:

Example 2 - Write a Text File:

 var ForWriting = 2;

 var fso = new ActiveXObject("Sc ripting.FileSystemObject");

 var textFile = fso.OpenTextFile("c: \ \ test.txt", ForWriting, true);

 textFile.Write ("This is a test.");

 textFile.Close();

This script has a difficulty: in order for it to work you must set your Internet Explorer security level to Low
for the site that you are accessing so that ActiveX controls can run and access the file system. Otherwise
you will get security warnings shown, or it might be simply refused by the browser. To get around this you
can use the Badboy Plugin API instead to create the ActiveX object, as is shown in Example 3, 4, 5 and 6
below.

For all these examples to work you must check the box marked "Allow access to plugin privileges" in your
JScript item.

Badboy v2.1 User Documentation

 Page 74 of 128

Example 3 - Write a Text File without Modifying Security Settings:

 var ForWriting = 2;

 var fso = badboy.plugin.createObject("Scripting.FileSystemObject");

 var textFile = fso.OpenTextFile("c: \ \ test.txt", ForWriting, true);

 textFile.Write ("This is a test.");

 textFile.Close();

Example 4 - Terminate a Process:

 var service =

badboy.plugin.createObject("WbemScripting.SWbemLocator").ConnectServer(".");

 var procs = service.ExecQuery("Select * from Win32_Process Where Name =

'notepad.exe'")

 var e = new Enumerator(procs);

 for (;!e.atEnd();e.moveNext ()) {

 var proc = e.item();

 proc.Terminate();

 }

Example 5 - Run a Batch Script:

 var shell = badboy.plugin.createObject("WScript.Shell");

 shell.Run("c: \ \ test.bat")

Example 6 - Reading and Writing to a Database:

 var con = badboy.plugin.createObject("ADODB.Connection");

con.open("ODBC;DATABASE=testdb;DSN=MyTestDB;OPTION=0;PWD=mypassword;PORT=0;SE

RVER=localhost;UID=testdbuserId");

 // Insert some data

 con.execute("insert into test_table values (1, 'test' 3)");

 // Query some data

 var rs = badboy.plugin.createObject("ADODB.Recordset")

 rs.open("select count(*) from test_table", con);

 alert(rs.fields(0));

 con.close();

If you are a programmer, you can even write automation objects of your own using your favorite language
and access them in the same way.

For more information on controlling Badboy with JScript, see Automating Badboy with OLE. You can call
any of these OLE function from JScript itself and thereby control Badboy itself as part of your scripts.

Badboy v2.1 User Documentation

 Page 75 of 128

29 Using References

Often, functional tests are written closely in conjunction with external documents. For example, it is
common to build tests to match corresponding items in a requirements specification, or to build tests
based on entries in an issue or bug tracking system. Badboy calls such external entities References and
offers features to let you define, track and view the associations between tests and external references
within Badboy. This allows, you to know, for example, when a test fails, which requirements, bugs or
features are impacted by the failing test. Creating or importing references first can also be a very practical
way to create tests, as you can then use them to drive which tests you create and ensure complete
coverage by checking the mapping of references to tests is complete.

29.1 Creating and Deleting References

There are two ways to create References within Badboy: manually or by importing them from another
source. Manual creation is performed from the References View which is usually found as a tab in the
bottom left corner of the Badboy frame window. You can click the 'New' button to create a new reference,
as shown below:

When the button is clicked, Badboy shows a window to let you enter details about the reference:

Figure 23: Reference Details

There are three fields you can specify:

¶ Id is a unique identifier for the reference. Usually this will correspond to an identifier from an
external system such as a Job Number, Bug ID or similar. However Badboy does not enforce any
particular format or constraint on these Ids, so you can use whatever you like here. Making it
unique will assist in certain situations, so it is useful, but not mandatory to ensure that no two
entries have the same Id.

¶ Title / Description is a textual description of the reference. This can be any text you like and
once again, Badboy does not enforce any constraint.

